Sidky Emil Y, Pan Xiaochuan
Department of Radiology MC-2026, University of Chicago, 5841 S. Maryland Ave., Chicago, IL 60637, USA.
Phys Med Biol. 2008 Sep 7;53(17):4777-807. doi: 10.1088/0031-9155/53/17/021. Epub 2008 Aug 13.
An iterative algorithm, based on recent work in compressive sensing, is developed for volume image reconstruction from a circular cone-beam scan. The algorithm minimizes the total variation (TV) of the image subject to the constraint that the estimated projection data is within a specified tolerance of the available data and that the values of the volume image are non-negative. The constraints are enforced by the use of projection onto convex sets (POCS) and the TV objective is minimized by steepest descent with an adaptive step-size. The algorithm is referred to as adaptive-steepest-descent-POCS (ASD-POCS). It appears to be robust against cone-beam artifacts, and may be particularly useful when the angular range is limited or when the angular sampling rate is low. The ASD-POCS algorithm is tested with the Defrise disk and jaw computerized phantoms. Some comparisons are performed with the POCS and expectation-maximization (EM) algorithms. Although the algorithm is presented in the context of circular cone-beam image reconstruction, it can also be applied to scanning geometries involving other x-ray source trajectories.
基于压缩感知的最新研究成果,开发了一种迭代算法,用于从圆锥束扫描中重建体层图像。该算法在满足估计的投影数据在可用数据的指定容差范围内且体层图像的值为非负的约束条件下,使图像的总变差(TV)最小化。通过使用凸集投影(POCS)来强制执行这些约束,并通过具有自适应步长的最速下降法使TV目标最小化。该算法被称为自适应最速下降-凸集投影(ASD-POCS)。它似乎对圆锥束伪影具有鲁棒性,并且在角度范围有限或角度采样率较低时可能特别有用。使用Defrise圆盘和颌骨计算机体模对ASD-POCS算法进行了测试。与POCS算法和期望最大化(EM)算法进行了一些比较。尽管该算法是在圆锥束图像重建的背景下提出的,但它也可以应用于涉及其他X射线源轨迹的扫描几何结构。