Department of Chemistry, University of California , 1102 Natural Sciences II, Irvine, California 92697-2025, United States.
Acc Chem Res. 2016 Oct 18;49(10):2220-2231. doi: 10.1021/acs.accounts.6b00398. Epub 2016 Sep 30.
Allylic amides, amines, and esters are key synthetic building blocks. Their enantioselective syntheses under mild conditions is a continuing pursuit of organic synthesis methods development. One opportunity for the synthesis of these building blocks is by functionalization of prochiral double bonds using palladium(II) catalysis. In these reactions, nucleopalladation mediated by a chiral palladium(II) catalyst generates a new heteroatom-substituted chiral center. However, reactions where nucleopalladation occurs with antarafacial stereoselectivity are difficult to render enantioselective because of the challenge of transferring chiral ligand information across the square-planar palladium complex to the incoming nucleophile. In this Account, we describe the development and use of enantiopure palladium(II) catalysts of the COP (chiral cobalt oxazoline palladacyclic) family for the synthesis of enantioenriched products from starting materials derived from prochiral allylic alcohols. We begin with initial studies aimed at rendering catalyzed [3,3]-sigmatropic rearrangements of allylic imidates enantioselective, which ultimately led to the identification of the significant utility of the COP family of Pd(II) catalysts. The first use of an enantioselective COP catalyst was reported by Richards' and our laboratories in 2003 for the enantioselective rearrangement of allylic N-arylimidates. Shortly thereafter, we discovered that the chloride-bridged COP dimer, [COP-Cl], was an excellent enantioselective catalyst for the rearrangement of (E)-allylic trichloroacetimidates to enantioenriched allylic trichloroacetamides, this conversion being the most widely used of the allylic imidate rearrangements. We then turn to discuss S2' reactions catalyzed by the acetate-bridged COP dimer, [COP-OAc], which proceed by a unique mechanism to provide branched allylic esters and allylic phenyl ethers in high enantioselectivity. Furthermore, because of the unique nucleopalladation/deoxypalladation mechanism of these S2' reactions, they provide exclusively the branched allylic product. Importantly, both enantiomers of the [COP-Cl] and [COP-OAc] catalysts are commercially available. We also briefly consider several other enantioselective reactions catalyzed by COP complexes. The mechanism of enantioselective COP-catalyzed allylic rearrangements and allylic substitutions is discussed in some detail. In both reactions, nucleopalladation is found to be the enantiodetermining step. The cyclobutadienyl "floor" of the COP catalyst is critical for transmitting chiral information across the palladium square plane in these reactions. This structural feature enables high enantioselection to be realized in spite of the nearly 180° angle between the catalyst, electrophile and nucleophile in the enantiodetermining step. Our discussion concludes by considering several uses of the COP family of catalysts by other researchers for the enantioselective synthesis of biologically active chiral molecules. We anticipate that additional uses for COP catalysts will emerge in the future. In addition, the structural features of these catalysts that we have identified as important for achieving high enantioselection should be useful in the future development of improved enantioselective Pd(II) catalysts.
烯丙酰胺、胺和酯是关键的合成构建块。在温和条件下对其进行对映选择性合成是有机合成方法发展的持续追求。这些构建块的合成机会之一是使用钯 (II) 催化对前手性双键进行官能化。在这些反应中,手性钯 (II) 催化剂介导的亲核钯化生成新的杂原子取代手性中心。然而,由于挑战将手性配体信息从四方钯配合物转移到进入的亲核试剂,因此难以实现对反式面立体选择性亲核钯化的对映选择性反应。在本报告中,我们描述了对映纯钯 (II) 催化剂的 COP(手性钴恶唑啉钯环)家族的开发和用途,用于从前手性烯丙基醇衍生的起始原料合成对映体富集产物。我们首先进行了旨在使催化的 [3,3]-σ重排反应对映选择性的初步研究,这最终导致确定了 COP 家族钯 (II) 催化剂的重要用途。Richards' 和我们实验室于 2003 年首次报道了对映选择性 COP 催化剂的使用,用于对映选择性重排烯丙基 N-芳基亚氨基酯。此后不久,我们发现氯化物桥联的 COP 二聚体 [COP-Cl] 是对映选择性重排(E)-烯丙基三氯乙酰胺的出色催化剂,将其转化为最广泛使用的烯丙基亚氨基酯重排,得到对映体富集的烯丙基三氯乙酰胺。然后,我们转向讨论乙酸酯桥联的 COP 二聚体 [COP-OAc] 催化的 S2' 反应,该反应通过独特的机制进行,以高对映选择性提供支链烯丙基酯和烯丙基苯基醚。此外,由于这些 S2' 反应的独特亲核钯化/脱钯化机制,它们仅提供支链烯丙基产物。重要的是,[COP-Cl] 和 [COP-OAc] 催化剂的两种对映异构体均可商购获得。我们还简要讨论了 COP 配合物催化的其他几种对映选择性反应。对映选择性 COP 催化的烯丙基重排和烯丙基取代反应的机制进行了详细讨论。在这两种反应中,亲核钯化被发现是对映体决定步骤。COP 催化剂的环丁二烯基“地板”对于在这些反应中在手性钯四方平面上传递手性信息至关重要。尽管在对映体决定步骤中催化剂、亲电试剂和亲核试剂之间的角度接近 180°,但这种结构特征使高对映选择性得以实现。我们的讨论以其他研究人员在生物活性手性分子的对映选择性合成中使用 COP 家族催化剂的几个用途结束。我们预计未来 COP 催化剂的用途将会增加。此外,我们确定的对实现高对映选择性很重要的这些催化剂的结构特征在未来改进对映选择性 Pd(II) 催化剂的开发中应该是有用的。