Rodríguez Jorge, Barrera-Animas Ari Y, Trejo Luis A, Medina-Pérez Miguel Angel, Monroy Raúl
Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Carretera al Lago de Guadalupe Km. 3.5, Atizapán, Edo. de México C.P. 52926, Mexico.
Sensors (Basel). 2016 Sep 29;16(10):1619. doi: 10.3390/s16101619.
This study introduces the One-Class K-means with Randomly-projected features Algorithm (OCKRA). OCKRA is an ensemble of one-class classifiers built over multiple projections of a dataset according to random feature subsets. Algorithms found in the literature spread over a wide range of applications where ensembles of one-class classifiers have been satisfactorily applied; however, none is oriented to the area under our study: personal risk detection. OCKRA has been designed with the aim of improving the detection performance in the problem posed by the Personal RIsk DEtection(PRIDE) dataset. PRIDE was built based on 23 test subjects, where the data for each user were captured using a set of sensors embedded in a wearable band. The performance of OCKRA was compared against support vector machine and three versions of the Parzen window classifier. On average, experimental results show that OCKRA outperformed the other classifiers for at least 0.53% of the area under the curve (AUC). In addition, OCKRA achieved an AUC above 90% for more than 57% of the users.
本研究介绍了带随机投影特征的单类K均值算法(OCKRA)。OCKRA是一个单类分类器集成,它基于数据集根据随机特征子集的多个投影构建而成。文献中发现的算法广泛应用于单类分类器集成已得到满意应用的各种场景;然而,没有一种算法针对我们所研究的领域:个人风险检测。OCKRA的设计目的是提高在个人风险检测(PRIDE)数据集所提出问题中的检测性能。PRIDE是基于23名测试对象构建的,其中每个用户的数据是使用嵌入可穿戴手环中的一组传感器采集的。将OCKRA的性能与支持向量机和Parzen窗口分类器的三个版本进行了比较。实验结果平均表明,OCKRA在曲线下面积(AUC)方面比其他分类器至少高出0.53%。此外,对于超过57%的用户,OCKRA的AUC超过了90%。