Suppr超能文献

基于传感器的人体活动识别中的带影子特征的分类器训练。

Training Classifiers with Shadow Features for Sensor-Based Human Activity Recognition.

机构信息

Department of Computer and Information Science, University of Macau, Taipa 999078, Macau, China.

Department of Digital Media Technology, North China University of Technology, Beijing 100144, China.

出版信息

Sensors (Basel). 2017 Feb 27;17(3):476. doi: 10.3390/s17030476.

Abstract

In this paper, a novel training/testing process for building/using a classification model based on human activity recognition (HAR) is proposed. Traditionally, HAR has been accomplished by a classifier that learns the activities of a person by training with skeletal data obtained from a motion sensor, such as Microsoft Kinect. These skeletal data are the spatial coordinates (x, y, z) of different parts of the human body. The numeric information forms time series, temporal records of movement sequences that can be used for training a classifier. In addition to the spatial features that describe current positions in the skeletal data, new features called 'shadow features' are used to improve the supervised learning efficacy of the classifier. Shadow features are inferred from the dynamics of body movements, and thereby modelling the underlying momentum of the performed activities. They provide extra dimensions of information for characterising activities in the classification process, and thereby significantly improve the classification accuracy. Two cases of HAR are tested using a classification model trained with shadow features: one is by using wearable sensor and the other is by a Kinect-based remote sensor. Our experiments can demonstrate the advantages of the new method, which will have an impact on human activity detection research.

摘要

本文提出了一种新的基于人体活动识别(HAR)的分类模型构建/使用的训练/测试过程。传统上,HAR 是通过分类器来完成的,该分类器通过使用来自运动传感器(如 Microsoft Kinect)的骨骼数据进行训练来学习一个人的活动。这些骨骼数据是人体不同部位的空间坐标(x,y,z)。数值信息形成时间序列,即运动序列的时间记录,可用于训练分类器。除了描述骨骼数据中当前位置的空间特征外,还使用了称为“阴影特征”的新特征来提高分类器的监督学习效果。阴影特征是从身体运动的动力学中推断出来的,从而模拟所执行活动的潜在动量。它们为分类过程中的活动提供了额外的信息维度,从而显著提高了分类准确性。使用训练有阴影特征的分类模型测试了两种 HAR 情况:一种是使用可穿戴传感器,另一种是基于 Kinect 的远程传感器。我们的实验可以证明这种新方法的优势,这将对人体活动检测研究产生影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4c8/5375762/b2d5f9b5d8ec/sensors-17-00476-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验