Roy Arpita, Banerjee Pavel, Dutta Rupam, Kundu Sangita, Sarkar Nilmoni
Department of Chemistry, Indian Institute of Technology , Kharagpur 721302, WB India.
Langmuir. 2016 Oct 25;32(42):10946-10956. doi: 10.1021/acs.langmuir.6b02794. Epub 2016 Oct 11.
This article demonstrates the interaction of a deoxyribonucleic acid (DNA) nucleotide, adenosine-5'-monophosphate disodium (AMP) with a cationic surface active ionic liquid (SAIL) 1-dodecyl-3-methylimidazoium chloride (CmimCl), and an anionic SAIL, 1-butyl-3-methylimidazolium n-octylsulfate ([Cmim][CSO]). Dynamic light scattering (DLS) measurements and H NMR (nuclear magnetic resonance) studies indicate that substantial interaction is taking place among the DNA nucleotide (AMP) and the SAILs. Moreover, cryogenic transmission electron microscopy (cryo-TEM) suggests that SAILs containing micellar assemblies are transformed into larger micellar assemblies in the presence of DNA nucleotides. Additionally, the rotational motion of two oppositely charged molecules, rhodamine 6G perchlorate (R6G) and fluorescein sodium salt (Fl-Na), have been monitored in these aggregates. The rotational motion of R6G and Fl-Na differs significantly between SAILs micelles and SAILs-AMP containing larger micellar aggregates. The effect of negatively charged DNA nucleotide (AMP) addition into the cationic and anionic SAILs is more prominent for the cationic charged molecule R6G than that of anionic probe Fl-Na due to the favorable electrostatic interaction between the AMP and cationic R6G. Moreover, the influence of the anionic DNA nucleotide on the cationic and anionic SAIL micelles is monitored through the variation of the lateral diffusion motion of oppositely charged probe molecules (R6G and Fl-Na) inside these aggregates. This variation in diffusion coefficient values also suggests that the interaction pattern of these oppositely charged probes are different within the SAILs-nucleotide containing aggregates. Therefore, both rotational and translational diffusion measurements confirm that the DNA nucleotide (AMP) renders more rigid microenvironment within the micellar solution of SAILs.
本文展示了脱氧核糖核酸(DNA)核苷酸5'-单磷酸腺苷二钠(AMP)与阳离子表面活性离子液体(SAIL)1-十二烷基-3-甲基咪唑鎓氯化物(CmimCl)以及阴离子SAIL 1-丁基-3-甲基咪唑鎓正辛基硫酸盐([Cmim][CSO])之间的相互作用。动态光散射(DLS)测量和核磁共振氢谱(1H NMR)研究表明,DNA核苷酸(AMP)与SAILs之间正在发生大量相互作用。此外,低温透射电子显微镜(cryo-TEM)表明,含有胶束聚集体的SAILs在DNA核苷酸存在下会转变为更大的胶束聚集体。此外,还监测了两种带相反电荷的分子罗丹明6G高氯酸盐(R6G)和荧光素钠盐(Fl-Na)在这些聚集体中的旋转运动。R6G和Fl-Na的旋转运动在SAILs胶束和含有更大胶束聚集体的SAILs-AMP之间有显著差异。由于AMP与阳离子R6G之间有利的静电相互作用,向阳离子和阴离子SAILs中添加带负电荷的DNA核苷酸(AMP)对带阳离子电荷的分子R6G的影响比对阴离子探针Fl-Na的影响更显著。此外,通过这些聚集体内部带相反电荷的探针分子(R6G和Fl-Na)横向扩散运动的变化来监测阴离子DNA核苷酸对阳离子和阴离子SAIL胶束的影响。扩散系数值的这种变化也表明,在含有SAILs-核苷酸的聚集体中,这些带相反电荷的探针的相互作用模式是不同的。因此,旋转和平动扩散测量都证实,DNA核苷酸(AMP)在SAILs的胶束溶液中形成了更刚性的微环境。