QUANTUM, Institut für Physik, Universität Mainz, Staudingerweg 7, Mainz, 55128, Germany.
Present address: Departamento de Física, FCEyN, UBA and IFIBA, Conicet, Pabellón 1, Ciudad Universitaria, 1428 Buenos Aires, Argentina, .
Nat Commun. 2016 Oct 3;7:12998. doi: 10.1038/ncomms12998.
Photons can carry angular momentum, not only due to their spin, but also due to their spatial structure. This extra twist has been used, for example, to drive circular motion of microscopic particles in optical tweezers as well as to create vortices in quantum gases. Here we excite an atomic transition with a vortex laser beam and demonstrate the transfer of optical orbital angular momentum to the valence electron of a single trapped ion. We observe strongly modified selection rules showing that an atom can absorb two quanta of angular momentum from a single photon: one from the spin and another from the spatial structure of the beam. Furthermore, we show that parasitic ac-Stark shifts from off-resonant transitions are suppressed in the dark centre of vortex beams. These results show how light's spatial structure can determine the characteristics of light-matter interaction and pave the way for its application and observation in other systems.
光子不仅可以通过自旋携带角动量,还可以通过其空间结构携带角动量。这种额外的扭曲已被用于例如在光镊中驱动微观粒子的圆周运动,以及在量子气体中产生漩涡。在这里,我们用一个漩涡激光束激发原子跃迁,并证明了光学轨道角动量向单个被捕获离子的价电子的转移。我们观察到强烈的修正选择定则,表明原子可以从单个光子中吸收两个角动量量子:一个来自自旋,另一个来自光束的空间结构。此外,我们还表明,来自非共振跃迁的寄生 ac-Stark 位移在漩涡光束的暗中心被抑制。这些结果表明,光的空间结构如何决定光与物质相互作用的特征,并为其在其他系统中的应用和观察铺平道路。