Nazirkar Nimish P, Tran Viet, Bassène Pascal, Ndiaye Atoumane, Barringer Julie, Jiang Jie, Cha Wonsuk, Harder Ross, Shi Jian, N'Gom Moussa, Fohtung Edwin
Department of Materials Science and Engineering, Rensselaer Polytechnic Institute (RPI), Troy, NY, 12180, USA.
Department of Physics, Applied Physics, and Astronomy, RPI, Troy, NY, 12180, USA.
Adv Mater. 2025 Jun 6:e2415231. doi: 10.1002/adma.202415231.
The dynamic control of non-equilibrium states represents a central challenge in condensed matter physics. While intense terahertz fields drive metal-insulator transitions and ferroelectricity via soft phonon modes, recent theory suggests that twisted light with orbital angular momentum (OAM) offers a distinct route to manipulate ferroelectric order and stabilize topological excitations including skyrmions, vortices, and Hopfions. Control of ferroelectric polarization in quasi-2D CsBiNbO (CBNO) is demonstrated using non-resonant twisted ultra-violet (UV) light (375 nm, 800 THz). Combining in situ X-ray Bragg coherent diffractive imaging (BCDI), twisted optical Raman spectroscopy, and density functional theory (DFT), three-dimensional (3D) ionic displacements, strain fields, and polarization changes are resolved in single crystals. Operando measurements reveal light-induced strain hysteresis under twisted light-a hallmark of nonlinear, history-dependent ferroelastic switching driven by OAM. Discrete, irreversible domain transitions emerge as the topological charge ℓ is cycled, stabilizing non-trivial domain textures including vortex-antivortex pairs, Bloch/anti-Bloch points, and merons. These persist after OAM removal, indicating a memory effect. Competing mechanisms are discussed, including multiphoton absorption, strain-mediated polarization switching, and defect-wall interactions. The findings establish structured light as a tool for deterministic, reversible control of ferroic states, enabling optically reconfigurable non-volatile devices.
非平衡态的动态控制是凝聚态物理中的一个核心挑战。虽然强太赫兹场通过软声子模式驱动金属-绝缘体转变和铁电性,但最近的理论表明,具有轨道角动量(OAM)的扭曲光提供了一种独特的途径来操纵铁电序并稳定包括斯格明子、涡旋和霍普夫离子在内的拓扑激发。利用非共振扭曲紫外光(375nm,800THz)演示了对准二维CsBiNbO(CBNO)中铁电极化的控制。结合原位X射线布拉格相干衍射成像(BCDI)、扭曲光学拉曼光谱和密度泛函理论(DFT),解析了单晶中的三维(3D)离子位移、应变场和极化变化。原位测量揭示了扭曲光下光致应变滞后——这是由OAM驱动的非线性、历史依赖铁弹开关的标志。随着拓扑电荷ℓ的循环,出现了离散的、不可逆的畴转变,稳定了包括涡旋-反涡旋对、布洛赫/反布洛赫点和磁单极子在内的非平凡畴结构。这些在OAM去除后仍然存在,表明存在记忆效应。讨论了竞争机制,包括多光子吸收、应变介导的极化开关和缺陷壁相互作用。这些发现将结构化光确立为一种用于确定性、可逆控制铁性态的工具,从而实现光学可重构非易失性器件。