Department of Mathematical Sciences, Michigan Technological University, Houghton, Michigan, USA.
Sci Rep. 2016 Oct 3;6:34323. doi: 10.1038/srep34323.
Currently, the analyses of most genome-wide association studies (GWAS) have been performed on a single phenotype. There is increasing evidence showing that pleiotropy is a widespread phenomenon in complex diseases. Therefore, using only one single phenotype may lose statistical power to identify the underlying genetic mechanism. There is an increasing need to develop and apply powerful statistical tests to detect association between multiple phenotypes and a genetic variant. In this paper, we develop an Adaptive Fisher's Combination (AFC) method for joint analysis of multiple phenotypes in association studies. The AFC method combines p-values obtained in standard univariate GWAS by using the optimal number of p-values which is determined by the data. We perform extensive simulations to evaluate the performance of the AFC method and compare the power of our method with the powers of TATES, Tippett's method, Fisher's combination test, MANOVA, MultiPhen, and SUMSCORE. Our simulation studies show that the proposed method has correct type I error rates and is either the most powerful test or comparable with the most powerful test. Finally, we illustrate our proposed methodology by analyzing whole-genome genotyping data from a lung function study.
目前,大多数全基因组关联研究(GWAS)的分析都是针对单一表型进行的。越来越多的证据表明,多效性是复杂疾病中普遍存在的现象。因此,仅使用一个单一的表型可能会失去识别潜在遗传机制的统计能力。因此,越来越需要开发和应用强大的统计检验方法来检测多个表型与遗传变异之间的关联。在本文中,我们开发了一种自适应 Fisher 组合(AFC)方法,用于关联研究中多个表型的联合分析。AFC 方法通过使用由数据确定的最佳数量的 p 值,将标准单变量 GWAS 中的 p 值组合起来。我们进行了广泛的模拟来评估 AFC 方法的性能,并将我们的方法的功效与 TATES、Tippett 方法、Fisher 组合检验、MANOVA、MultiPhen 和 SUMSCORE 的功效进行了比较。我们的模拟研究表明,该方法具有正确的Ⅰ型错误率,并且是最强大的检验方法之一,或者与最强大的检验方法相当。最后,我们通过分析来自肺功能研究的全基因组基因分型数据来说明我们提出的方法。