Department of Mathematical Sciences, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA.
Genes (Basel). 2022 Jun 22;13(7):1120. doi: 10.3390/genes13071120.
Recently, gene-based association studies have shown that integrating genome-wide association studies (GWAS) with expression quantitative trait locus (eQTL) data can boost statistical power and that the genetic liability of traits can be captured by polygenic risk scores (PRSs). In this paper, we propose a new gene-based statistical method that leverages gene-expression measurements and new PRSs to identify genes that are associated with phenotypes of interest. We used a generalized linear model to associate phenotypes with gene expression and PRSs and used a score-test statistic to test the association between phenotypes and genes. Our simulation studies show that the newly developed method has correct type I error rates and can boost statistical power compared with other methods that use either gene expression or PRS in association tests. A real data analysis figure based on UK Biobank data for asthma shows that the proposed method is applicable to GWAS.
最近,基于基因的关联研究表明,将全基因组关联研究 (GWAS) 与表达数量性状基因座 (eQTL) 数据相结合可以提高统计效力,并且可以通过多基因风险评分 (PRS) 捕获性状的遗传易感性。在本文中,我们提出了一种新的基于基因的统计方法,该方法利用基因表达测量值和新的 PRS 来识别与感兴趣表型相关的基因。我们使用广义线性模型将表型与基因表达和 PRS 相关联,并使用评分检验统计量来检验表型与基因之间的关联。我们的模拟研究表明,新开发的方法具有正确的Ⅰ型错误率,并且与在关联测试中仅使用基因表达或 PRS 的其他方法相比,可以提高统计效力。基于英国生物库数据的哮喘真实数据分析图表明,所提出的方法适用于 GWAS。