Hamaide Julie, De Groof Geert, Van Steenkiste Gwendolyn, Jeurissen Ben, Van Audekerke Johan, Naeyaert Maarten, Van Ruijssevelt Lisbeth, Cornil Charlotte, Sijbers Jan, Verhoye Marleen, Van der Linden Annemie
Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp, Belgium.
iMinds-Vision Lab, Department of Physics, University of Antwerp, Belgium.
Neuroimage. 2017 Feb 1;146:789-803. doi: 10.1016/j.neuroimage.2016.09.067. Epub 2016 Sep 30.
Zebra finches are an excellent model to study the process of vocal learning, a complex socially-learned tool of communication that forms the basis of spoken human language. So far, structural investigation of the zebra finch brain has been performed ex vivo using invasive methods such as histology. These methods are highly specific, however, they strongly interfere with performing whole-brain analyses and exclude longitudinal studies aimed at establishing causal correlations between neuroplastic events and specific behavioral performances. Therefore, the aim of the current study was to implement an in vivo Diffusion Tensor Imaging (DTI) protocol sensitive enough to detect structural sex differences in the adult zebra finch brain. Voxel-wise comparison of male and female DTI parameter maps shows clear differences in several components of the song control system (i.e. Area X surroundings, the high vocal center (HVC) and the lateral magnocellular nucleus of the anterior nidopallium (LMAN)), which corroborate previous findings and are in line with the clear behavioral difference as only males sing. Furthermore, to obtain additional insights into the 3-dimensional organization of the zebra finch brain and clarify findings obtained by the in vivo study, ex vivo DTI data of the male and female brain were acquired as well, using a recently established super-resolution reconstruction (SRR) imaging strategy. Interestingly, the SRR-DTI approach led to a marked reduction in acquisition time without interfering with the (spatial and angular) resolution and SNR which enabled to acquire a data set characterized by a 78μm isotropic resolution including 90 diffusion gradient directions within 44h of scanning time. Based on the reconstructed SRR-DTI maps, whole brain probabilistic Track Density Imaging (TDI) was performed for the purpose of super resolved track density imaging, further pushing the resolution up to 40μm isotropic. The DTI and TDI maps realized atlas-quality anatomical maps that enable a clear delineation of most components of the song control and auditory systems. In conclusion, this study paves the way for longitudinal in vivo and high-resolution ex vivo experiments aimed at disentangling neuroplastic events that characterize the critical period for vocal learning in zebra finch ontogeny.
斑胸草雀是研究发声学习过程的优秀模型,发声学习是一种复杂的社会学习交流工具,构成了人类口语的基础。到目前为止,对斑胸草雀大脑的结构研究一直是在离体状态下使用组织学等侵入性方法进行的。这些方法具有高度特异性,然而,它们严重干扰了全脑分析的进行,并且排除了旨在建立神经可塑性事件与特定行为表现之间因果关系的纵向研究。因此,本研究的目的是实施一种体内扩散张量成像(DTI)方案,其灵敏度足以检测成年斑胸草雀大脑中的结构性别差异。对雄性和雌性DTI参数图进行体素级比较,结果显示在鸣叫控制系统的几个组成部分(即X区周围、高级发声中枢(HVC)和前巢皮质外侧大细胞核(LMAN))存在明显差异,这证实了先前的研究结果,并且与明显的行为差异一致,因为只有雄性会唱歌。此外,为了进一步深入了解斑胸草雀大脑的三维组织结构,并阐明体内研究获得的结果,还使用最近建立的超分辨率重建(SRR)成像策略获取了雄性和雌性大脑的离体DTI数据。有趣的是,SRR-DTI方法在不干扰(空间和角度)分辨率及信噪比的情况下,显著缩短了采集时间,从而能够在44小时的扫描时间内获取一个各向同性分辨率为78μm、包含90个扩散梯度方向的数据集。基于重建的SRR-DTI图,为了进行超分辨率轨迹密度成像,进行了全脑概率轨迹密度成像(TDI),进一步将分辨率提高到各向同性40μm。DTI和TDI图实现了图谱质量的解剖图,能够清晰描绘鸣叫控制系统和听觉系统的大多数组成部分。总之,本研究为纵向体内和高分辨率离体实验铺平了道路,这些实验旨在解开斑胸草雀个体发育过程中发声学习关键期的神经可塑性事件。