University. Grenoble Alpes, Inserm, U1205, BrainTech Lab, 1, place Commandant Nal, 38700, La Tronche, Grenoble, France.
, BioSerenity company 20 Rue Berbier de Mets, 75013, Paris, France.
MAGMA. 2023 Aug;36(4):577-587. doi: 10.1007/s10334-023-01061-7. Epub 2023 Jan 25.
Exploring mouse brains by rapid 3D-Diffusion Tensor Imaging (3D-DTI) of high spatial resolution (HSR) is challenging in vivo. Here we use the super resolution reconstruction (SRR) postprocessing method to demonstrate its performance on Microtubule-Associated-Protein6 Knock-Out (MAP6-KO) mice.
Two spin-echo DTI were acquired (9.4T, CryoProbe RF-coil): (i)-multislice 2D-DTI, (echo-planar integrating reversed-gradient) acquired in vivo in the three orthogonal orientations (360 μm slice-thickness, 120 × 120 μm in-plane resolution, 56 min scan duration); used in SRR software to reconstruct SRR 3D-DTI with HSR in slice-plane (120 × 120 × 120 µm) and (ii)-microscopic 3D-DTI (µ-3D-DTI), (100 × 100 × 100 µm; 8 h 6 min) on fixed-brains ex vivo, that were removed after paramagnetic contrast-agent injection to accelerate scan acquisition using short repetition-times without NMR-signal sensitivity loss.
White-matter defects, quantified from both 3D-DTI fiber-tracking were found very similar. Indeed, as expected the fornix and cerebral-peduncle volume losses were - 39% and - 35% in vivo (SRR 3D-DTI) versus - 34% and - 32% ex vivo (µ-3D-DTI), respectively (p<0.001). This finding is robust since the µ-3D-DTI feasibility on MAP6-KO ex vivo was already validated by fluorescent-microscopy of cleared brains.
First performance of the SRR to generate rapid HSR 3D-DTI of mouse brains in vivo is demonstrated. The method is suitable in neurosciences for longitudinal studies to identify molecular and genetic abnormalities in mouse models that are of growing developments.
对高空间分辨率 (HSR) 的快速 3D-扩散张量成像 (3D-DTI) 进行快速 3D-DTI 以探索小鼠大脑具有挑战性。在这里,我们使用超分辨率重建 (SRR) 后处理方法来展示其在微管相关蛋白 6 敲除 (MAP6-KO) 小鼠中的性能。
在 9.4T、CryoProbe RF 线圈上获取两个自旋回波 DTI:(i)-多层 2D-DTI,在三个正交方向上(360 μm 层厚、120×120 μm 面内分辨率、56 min 扫描时间)进行体内采集的(反向梯度);在 SRR 软件中用于在片层平面(120×120×120 μm)中重建具有 HSR 的 SRR 3D-DTI,并进行(i)-微观 3D-DTI (µ-3D-DTI),(100×100×100 μm;8 h 6 min)在固定的离体大脑上进行,在注射顺磁性对比剂后移除这些大脑以加速扫描采集,使用短重复时间而不会损失 NMR 信号灵敏度。
从两种 3D-DTI 纤维追踪中量化的白质缺陷非常相似。事实上,正如预期的那样,在体内(SRR 3D-DTI)中,穹窿和大脑脚的体积损失分别为-39%和-35%,而在体外(µ-3D-DTI)中分别为-34%和-32%(p<0.001)。这一发现是可靠的,因为µ-3D-DTI 在 MAP6-KO 离体中的可行性已经通过清除大脑的荧光显微镜验证。
首次展示了用于在体生成快速 HSR 3D-DTI 的 SRR 方法。该方法适用于神经科学中的纵向研究,以识别越来越多的小鼠模型中的分子和遗传异常。