Lee Myung-Won, Kwak Keun-Chang
Department of Control and Instrumentation Engineering, Chosun University, 375 Seosuk-dong, Dong-gu, Gwangju 501-759, Republic of Korea.
Comput Intell Neurosci. 2016;2016:3207627. doi: 10.1155/2016/3207627. Epub 2016 Sep 8.
This paper is concerned with the design of an Incremental Radial Basis Function Network (IRBFN) by combining Linear Regression (LR) and local RBFN for the prediction of heating load and cooling load in residential buildings. Here the proposed IRBFN is designed by building a collection of information granules through Context-based Fuzzy C-Means (CFCM) clustering algorithm that is guided by the distribution of error of the linear part of the LR model. After adopting a construct of a LR as global model, refine it through local RBFN that captures remaining and more localized nonlinearities of the system to be considered. The experiments are performed on the estimation of energy performance of 768 diverse residential buildings. The experimental results revealed that the proposed IRBFN showed good performance in comparison to LR, the standard RBFN, RBFN with information granules, and Linguistic Model (LM).
本文关注的是通过结合线性回归(LR)和局部径向基函数网络(RBFN)来设计增量径向基函数网络(IRBFN),用于预测住宅建筑的供热负荷和制冷负荷。在此,所提出的IRBFN是通过基于上下文的模糊C均值(CFCM)聚类算法构建信息粒集合来设计的,该算法由LR模型线性部分的误差分布引导。在采用LR作为全局模型的结构后,通过局部RBFN对其进行细化,局部RBFN捕获要考虑系统中剩余的和更局部的非线性。对768栋不同住宅建筑的能源性能估计进行了实验。实验结果表明,与LR、标准RBFN、带信息粒的RBFN和语言模型(LM)相比,所提出的IRBFN表现出良好的性能。