Ruh Dominic, Subramanian Sivaraman, Sherman Stanislav, Ruhhammer Johannes, Theodor Michael, Dirk Lebrecht, Foerster Katharina, Heilmann Claudia, Beyersdorf Friedhelm, Zappe Hans, Seifert Andreas
Department of Microsystems Engineering - IMTEK, University of Freiburg, Germany.
Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Germany.
Biomed Opt Express. 2016 Aug 5;7(9):3230-3246. doi: 10.1364/BOE.7.003230. eCollection 2016 Sep 1.
Most cardiovascular diseases, such as arteriosclerosis and hypertension, are directly linked to pathological changes in hemodynamics, i.e. the complex coupling of blood pressure, blood flow and arterial distension. To improve the current understanding of cardiovascular diseases and pave the way for novel cardiovascular diagnostics, innovative tools are required that measure pressure, flow, and distension waveforms with yet unattained spatiotemporal resolution. In this context, miniaturized implantable solutions for continuously measuring these parameters over the long-term are of particular interest. We present here an implantable photonic sensor system capable of sensing arterial wall movements of a few hundred microns with sub-micron resolution, a precision in the micrometer range and a temporal resolution of 10 kHz. The photonic measurement principle is based on transmission photoplethysmography with stretchable optoelectronic sensors applied directly to large systemic arteries. The presented photonic sensor system expands the toolbox of cardiovascular measurement techniques and makes these key vital parameters continuously accessible over the long-term. In the near term, this new approach offers a tool for clinical research, and as a perspective, a continuous long-term monitoring system that enables novel diagnostic methods in arteriosclerosis and hypertension research that follow the trend in quantifying cardiovascular diseases by measuring arterial stiffness and more generally analyzing pulse contours.
大多数心血管疾病,如动脉硬化和高血压,都与血液动力学的病理变化直接相关,即血压、血流和动脉扩张的复杂耦合。为了增进目前对心血管疾病的了解,并为新型心血管诊断方法铺平道路,需要创新工具,以尚未达到的时空分辨率测量压力、血流和扩张波形。在这种情况下,能够长期连续测量这些参数的小型化可植入解决方案尤其令人关注。我们在此展示一种可植入光子传感器系统,它能够以亚微米分辨率感测几百微米的动脉壁运动,精度在微米范围内,时间分辨率为10 kHz。光子测量原理基于透射光电容积描记法,使用可拉伸的光电传感器直接应用于大的体循环动脉。所展示的光子传感器系统扩展了心血管测量技术的工具箱,并使这些关键生命参数能够长期持续获取。在短期内,这种新方法为临床研究提供了一种工具,从长远来看,它是一种连续长期监测系统,能够在动脉硬化和高血压研究中实现新型诊断方法,顺应通过测量动脉僵硬度以及更广泛地分析脉搏轮廓来量化心血管疾病的趋势。