Suppr超能文献

3D 宫内定量人类胎儿脑组织 T2*弛豫时间,以优化结构和功能 MRI 的年龄。

3D in utero quantification of T2* relaxation times in human fetal brain tissues for age optimized structural and functional MRI.

机构信息

Department of Pediatrics, University of Washington, Seattle, Washington, USA.

Department of Radiology, University of Washington, Seattle, Washington, USA.

出版信息

Magn Reson Med. 2017 Sep;78(3):909-916. doi: 10.1002/mrm.26471. Epub 2016 Oct 3.

Abstract

PURPOSE

Maximization of the blood oxygen level-dependent (BOLD) functional MRI (fMRI) contrast requires the echo time of the MR sequence to match the T2* value of the tissue of interest, which is expected to be higher in the fetal brain compared with the brain of a child or an adult.

METHODS

T2* values of the cortical plate/cortical gray matter tissue in utero in healthy fetuses from mid-gestation onward (20-36 gestational weeks) were measured using 3D T2* maps calculated from 2D dual-echo T2*-weighted data corrected for between-slice motion and reconstructed in 1.0 mm isotropic resolution from a sequence of multiple time points, together with 1.0 mm isotropic resolution T2-weighted structural data.

RESULTS

Mean T2* relaxation times of the cortical tissue were about twice as high as those reported previously in adults. In a supporting experiment applying single seed analysis, default mode and auditory networks appeared better localized and less noisy while using an echo time of 100 ms versus 43 ms. The results of the previous study reporting a trend for T2* values to decrease with fetal age were reproduced and extended to include cortical tissues and subjects in earlier gestation (20-26 gestational weeks).

CONCLUSION

The first measurement of T2* values in fetal cortical tissues suggested the appropriate echo time range for fetal BOLD fMRI protocol optimization to be 130-190 ms. Magn Reson Med 78:909-916, 2017. © 2016 International Society for Magnetic Resonance in Medicine.

摘要

目的

为了最大化血氧水平依赖(BOLD)功能磁共振成像(fMRI)对比,MR 序列的回波时间需要与感兴趣组织的 T2* 值相匹配,而胎儿大脑中的 T2* 值预计会高于儿童或成人的大脑。

方法

使用从 2 维双回波 T2*-加权数据计算得出的 3 维 T2* 图谱,测量从中孕期(20-36 孕周)起健康胎儿的皮质板/皮质灰质组织的 T2* 值,该图谱针对层面间运动进行了校正,并以 1.0 mm 各向同性分辨率从多个时间点的序列中进行重建,同时还使用了 1.0 mm 各向同性分辨率 T2 加权结构数据。

结果

皮质组织的平均 T2* 弛豫时间大约是之前在成人中报道的两倍。在一项应用单种子分析的支持性实验中,与使用 43 ms 回波时间相比,使用 100 ms 回波时间时默认模式和听觉网络的定位更准确,噪声更小。之前一项报告 T2* 值随胎龄降低趋势的研究结果得到了再现,并扩展到包括皮质组织和更早妊娠(20-26 孕周)的受试者。

结论

首次测量胎儿皮质组织的 T2* 值提示,优化胎儿 BOLD fMRI 方案的适当回波时间范围为 130-190 ms。磁共振医学 78:909-916, 2017。© 2016 国际磁共振学会。

相似文献

2
An efficient sequence for fetal brain imaging at 3T with enhanced T contrast and motion robustness.
Magn Reson Med. 2018 Jul;80(1):137-146. doi: 10.1002/mrm.27012. Epub 2017 Nov 28.
3
Inner-volume echo volumar imaging (IVEVI) for robust fetal brain imaging.
Magn Reson Med. 2018 Jul;80(1):279-285. doi: 10.1002/mrm.26998. Epub 2017 Nov 8.
4
Normative volume measurements of the fetal intra-cranial compartments using 3D volume in utero MR imaging.
Eur Radiol. 2019 Jul;29(7):3488-3495. doi: 10.1007/s00330-018-5938-5. Epub 2019 Jan 25.
5
In vivo T2 measurements of the fetal brain using single-shot fast spin echo sequences.
Magn Reson Med. 2024 Aug;92(2):715-729. doi: 10.1002/mrm.30094. Epub 2024 Apr 16.
6
T2* relaxometry of fetal brain at 1.5 Tesla using a motion tolerant method.
Magn Reson Med. 2015 May;73(5):1795-802. doi: 10.1002/mrm.25299. Epub 2014 Jul 12.
8
Growth trajectories of the human fetal brain tissues estimated from 3D reconstructed in utero MRI.
Int J Dev Neurosci. 2011 Aug;29(5):529-36. doi: 10.1016/j.ijdevneu.2011.04.001. Epub 2011 Apr 17.
9
Magnetic resonance imaging of the fetal brain.
Hong Kong Med J. 2016 Jun;22(3):270-8. doi: 10.12809/hkmj154678. Epub 2016 Apr 22.
10
T2 quantifications of fetal lungs at MRI-normal ranges.
Prenat Diagn. 2011 Jul;31(7):705-11. doi: 10.1002/pd.2746. Epub 2011 Mar 21.

引用本文的文献

1
Ultrafast and robust mapping using optimized single-shot multi-echo planar imaging with alternating blips.
Magn Reson Med. 2025 Aug;94(2):530-540. doi: 10.1002/mrm.30516. Epub 2025 Apr 28.
2
A dataset of synthetic, maturation-informed magnetic resonance images of the human fetal brain.
Sci Data. 2025 Apr 10;12(1):602. doi: 10.1038/s41597-025-04926-9.
3
Whole Brain MRI Assessment of Age and Sex-Related R2* Changes in the Human Fetal Brain.
Hum Brain Mapp. 2025 Feb 1;46(2):e70073. doi: 10.1002/hbm.70073.
5
T* relaxometry of fetal brain structures using low-field (0.55T) MRI.
Magn Reson Med. 2025 May;93(5):1942-1953. doi: 10.1002/mrm.30409. Epub 2024 Dec 31.
6
An automated pipeline for quantitative T2* fetal body MRI and segmentation at low field.
Med Image Comput Comput Assist Interv. 2023;14226:358-367. doi: 10.1007/978-3-031-43990-2_34. Epub 2023 Oct 1.
8
In vivo T2 measurements of the fetal brain using single-shot fast spin echo sequences.
Magn Reson Med. 2024 Aug;92(2):715-729. doi: 10.1002/mrm.30094. Epub 2024 Apr 16.
9
Functional MRI assessment of the lungs in fetuses that deliver very Preterm: An MRI pilot study.
Eur J Obstet Gynecol Reprod Biol. 2024 Feb;293:106-114. doi: 10.1016/j.ejogrb.2023.12.015. Epub 2023 Dec 20.
10

本文引用的文献

1
Fetal functional imaging portrays heterogeneous development of emerging human brain networks.
Front Hum Neurosci. 2014 Oct 22;8:852. doi: 10.3389/fnhum.2014.00852. eCollection 2014.
2
The relationship between eye movement and vision develops before birth.
Front Hum Neurosci. 2014 Oct 2;8:775. doi: 10.3389/fnhum.2014.00775. eCollection 2014.
3
T2* relaxometry of fetal brain at 1.5 Tesla using a motion tolerant method.
Magn Reson Med. 2015 May;73(5):1795-802. doi: 10.1002/mrm.25299. Epub 2014 Jul 12.
4
Resting State fMRI in the moving fetus: a robust framework for motion, bias field and spin history correction.
Neuroimage. 2014 Nov 1;101:555-68. doi: 10.1016/j.neuroimage.2014.06.074. Epub 2014 Jul 6.
5
A method for handling intensity inhomogenieties in fMRI sequences of moving anatomy of the early developing brain.
Med Image Anal. 2014 Feb;18(2):285-300. doi: 10.1016/j.media.2013.10.011. Epub 2013 Nov 6.
6
Cross-hemispheric functional connectivity in the human fetal brain.
Sci Transl Med. 2013 Feb 20;5(173):173ra24. doi: 10.1126/scitranslmed.3004978.
7
The contribution of myelin to magnetic susceptibility-weighted contrasts in high-field MRI of the brain.
Neuroimage. 2012 Feb 15;59(4):3967-75. doi: 10.1016/j.neuroimage.2011.10.076. Epub 2011 Oct 29.
8
Watching the fetal brain at 'rest'.
Int J Dev Neurosci. 2012 Feb;30(1):11-7. doi: 10.1016/j.ijdevneu.2011.10.006. Epub 2011 Oct 26.
9
Emergence of resting state networks in the preterm human brain.
Proc Natl Acad Sci U S A. 2010 Nov 16;107(46):20015-20. doi: 10.1073/pnas.1007921107. Epub 2010 Nov 1.
10
Intersection based motion correction of multislice MRI for 3-D in utero fetal brain image formation.
IEEE Trans Med Imaging. 2010 Jan;29(1):146-58. doi: 10.1109/TMI.2009.2030679. Epub 2009 Sep 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验