Valiente Esmeralda, Bouché Laura, Hitchen Paul, Faulds-Pain Alexandra, Songane Mario, Dawson Lisa F, Donahue Elizabeth, Stabler Richard A, Panico Maria, Morris Howard R, Bajaj-Elliott Mona, Logan Susan M, Dell Anne, Wren Brendan W
From the Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom.
the Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom.
J Biol Chem. 2016 Dec 2;291(49):25450-25461. doi: 10.1074/jbc.M116.749523. Epub 2016 Oct 4.
Clostridium difficile is the principal cause of nosocomial infectious diarrhea worldwide. The pathogen modifies its flagellin with either a type A or type B O-linked glycosylation system, which has a contributory role in pathogenesis. We study the functional role of glycosyltransferases modifying type B flagellin in the 023 and 027 hypervirulent C. difficile lineages by mutagenesis of five putative glycosyltransferases and biosynthetic genes. We reveal their roles in the biosynthesis of the flagellin glycan chain and demonstrate that flagellar post-translational modification affects motility and adhesion-related bacterial properties of these strains. We show that the glycosyltransferases 1 and 2 (GT1 and GT2) are responsible for the sequential addition of a GlcNAc and two rhamnoses, respectively, and that GT3 is associated with the incorporation of a novel sulfonated peptidyl-amido sugar moiety whose structure is reported in our accompanying paper (Bouché, L., Panico, M., Hitchen, P., Binet, D., Sastre, F., Faulds-Pain, A., Valiente, E., Vinogradov, E., Aubry, A., Fulton, K., Twine, S., Logan, S. M., Wren, B. W., Dell, A., and Morris, H. R. (2016) J. Biol. Chem. 291, 25439-25449). GT2 is also responsible for methylation of the rhamnoses. Whereas type B modification is not required for flagellar assembly, some mutations that result in truncation or abolition of the glycan reduce bacterial motility and promote autoaggregation and biofilm formation. The complete lack of flagellin modification also significantly reduces adhesion of C. difficile to Caco-2 intestinal epithelial cells but does not affect activation of human TLR5. Our study advances our understanding of the genes involved in flagellar glycosylation and their biological roles in emerging hypervirulent C. difficile strains.
艰难梭菌是全球医院感染性腹泻的主要病因。该病原体通过A型或B型O-连接糖基化系统修饰其鞭毛蛋白,这在发病机制中起一定作用。我们通过对五个假定的糖基转移酶和生物合成基因进行诱变,研究了修饰B型鞭毛蛋白的糖基转移酶在023和027高毒力艰难梭菌谱系中的功能作用。我们揭示了它们在鞭毛蛋白聚糖链生物合成中的作用,并证明鞭毛翻译后修饰会影响这些菌株的运动性和与黏附相关的细菌特性。我们表明,糖基转移酶1和2(GT1和GT2)分别负责依次添加一个N-乙酰葡糖胺和两个鼠李糖,并且GT3与一种新型磺化肽基酰胺糖部分的掺入有关,其结构在我们的随附论文中报道(布歇,L.,帕尼科,M.,希钦,P.,比内,D.,萨斯特雷,F.,福尔兹-佩恩,A.,瓦伦特,E.,维诺格拉多夫,E.,奥布里,A.,富尔顿,K.,特怀恩,S.,洛根,S.M.,雷恩,B.W.,戴尔,A.,和莫里斯,H.R.(2016年)《生物化学杂志》291,25439 - 25449)。GT2还负责鼠李糖的甲基化。虽然B型修饰不是鞭毛组装所必需的,但一些导致聚糖截断或缺失的突变会降低细菌运动性并促进自聚集和生物膜形成。完全缺乏鞭毛蛋白修饰也会显著降低艰难梭菌对Caco - 2肠上皮细胞的黏附,但不影响人TLR5的激活。我们的研究增进了我们对参与鞭毛糖基化的基因及其在新兴高毒力艰难梭菌菌株中的生物学作用的理解。