Deslauriers R, Keon W J, Lareau S, Moir D, Saunders J K, Smith I C, Whitehead K, Mainwood G W
Division of Biological Sciences, National Research Council of Canada, Ottawa, Ontario.
J Thorac Cardiovasc Surg. 1989 Sep;98(3):402-12.
After prolonged exposure to low temperatures (1 degree and 4 degrees C), human atrial trabeculae show poor recovery of contraction. At somewhat higher temperatures (12 degrees and 20 degrees C), recovery is much better (Keon and associates. Ann Thorac Surg 1988;46:337-41). Although better preservation of adenosine triphosphate and therefore improved contractile recovery might be expected after exposure to lower temperatures, it remained possible that, below a certain temperature, adenosine triphosphate-generating mechanisms could be slowed more than adenosine triphosphate utilization. To investigate this phenomenon further, we followed the time course of metabolic changes in human atrial appendages, harvested during cardiac bypass operations, at 1 degree, 4 degrees, 12 degrees, and 20 degrees C using high-resolution 31P and 1H nuclear magnetic resonance spectroscopy. The results are quantitated by correlation with data obtained from biochemical assays on quick-frozen tissues. Initial adenosine triphosphate levels in myocytes of human atrial appendages are 3.3 to 4.3 mumol.gm-1 tissue wet weight. At 20 degrees C, adenosine triphosphate disappears after 6 hours; at 12 degrees C, about half the initial adenosine triphosphate is still observable at this time; at 4 degrees C or 1 degree C, the decline is still slower. Only a small contribution toward adenosine triphosphate maintenance comes from creatine phosphate, since creatine phosphate, inorganic phosphate, and total creatine levels in the appendage are low (less than 2 mumol.gm-1 tissue wet weight). Glycolysis is active at all temperatures; the rate of glycolysis correlates positively with increasing temperature. Adenosine triphosphate generated by glycolysis falls just short of demand at all temperatures, but the difference is small at 1 degree and 4 degrees C. These studies lead us to conclude that the relatively poor recovery of contractile response of human atrial trabeculae, together with contracture reported previously at lower temperatures (1 degree and 4 degrees C), is not due to a failure to maintain adenosine triphosphate levels.
在长时间暴露于低温(1摄氏度和4摄氏度)后,人房小梁的收缩恢复较差。在稍高的温度(12摄氏度和20摄氏度)下,恢复情况要好得多(基翁及其同事。《胸外科年鉴》1988年;46:337 - 41)。尽管在暴露于较低温度后,可能预期三磷酸腺苷能得到更好的保存,从而改善收缩恢复,但仍有可能在低于某一温度时,三磷酸腺苷生成机制的减慢程度超过三磷酸腺苷的利用程度。为了进一步研究这一现象,我们利用高分辨率31P和1H核磁共振波谱,跟踪了在心脏搭桥手术期间采集的人心耳在1摄氏度、4摄氏度、12摄氏度和20摄氏度下代谢变化的时间进程。通过与从快速冷冻组织的生化分析获得的数据进行相关性分析,对结果进行定量。人房心耳肌细胞中的初始三磷酸腺苷水平为3.3至4.3微摩尔·克-1组织湿重。在20摄氏度时,三磷酸腺苷在6小时后消失;在12摄氏度时,此时仍可观察到约一半的初始三磷酸腺苷;在4摄氏度或1摄氏度时,下降速度仍然较慢。磷酸肌酸对三磷酸腺苷维持的贡献很小,因为心耳中的磷酸肌酸、无机磷酸和总肌酸水平较低(低于2微摩尔·克-1组织湿重)。糖酵解在所有温度下均有活性;糖酵解速率与温度升高呈正相关。在所有温度下,糖酵解产生的三磷酸腺苷略低于需求,但在1摄氏度和4摄氏度时差异较小。这些研究使我们得出结论,人房小梁收缩反应恢复相对较差,以及先前报道的在较低温度(1摄氏度和4摄氏度)下的挛缩,并非由于未能维持三磷酸腺苷水平。