Suppr超能文献

计算机断层扫描中人体检测准确性与基于观察者模型的图像质量指标之间的相关性。

Correlation between human detection accuracy and observer model-based image quality metrics in computed tomography.

作者信息

Solomon Justin, Samei Ehsan

机构信息

Duke University Health System , Department of Radiology, Carl E. Ravin Advanced Imaging Laboratories, 2424 Erwin Road, Suite 302, Durham, North Carolina 27705, United State s.

Duke University Health System, Department of Radiology, Carl E. Ravin Advanced Imaging Laboratories, 2424 Erwin Road, Suite 302, Durham, North Carolina 27705, United States; Duke University Medical Center, Department of Radiology, Clinical Imaging Physics Group, 2424 Erwin Road, Suite 302, Durham, North Carolina 27705, United States; Duke University, Pratt School of Engineering, Departments of Biomedical Engineering and Electrical and Computer Engineering, 2424 Erwin Road, Suite 302, Durham, North Carolina 27705, United States.

出版信息

J Med Imaging (Bellingham). 2016 Jul;3(3):035506. doi: 10.1117/1.JMI.3.3.035506. Epub 2016 Sep 22.

Abstract

The purpose of this study was to compare computed tomography (CT) low-contrast detectability from human readers with observer model-based surrogates of image quality. A phantom with a range of low-contrast signals (five contrasts, three sizes) was imaged on a state-of-the-art CT scanner (Siemens' force). Images were reconstructed using filtered back projection and advanced modeled iterative reconstruction and were assessed by 11 readers using a two alternative forced choice method. Concurrently, contrast-to-noise ratio (CNR), area-weighted CNR (CNRA), and observer model-based metrics were estimated, including nonprewhitening (NPW) matched filter, NPW with eye filter (NPWE), NPW with internal noise, NPW with an eye filter and internal noise (NPWEi), channelized Hotelling observer (CHO), and CHO with internal noise (CHOi). The correlation coefficients (Pearson and Spearman), linear discriminator error, [Formula: see text], and magnitude of confidence intervals, [Formula: see text], were used to determine correlation, proper characterization of the reconstruction algorithms, and model precision, respectively. Pearson (Spearman) correlation was 0.36 (0.33), 0.83 (0.84), 0.84 (0.86), 0.86 (0.88), 0.86 (0.91), 0.88 (0.90), 0.85 (0.89), and 0.87 (0.84), [Formula: see text] was 0.25, 0.15, 0.2, 0.25, 0.3, 0.25, 0.4, and 0.45, and [Formula: see text] was [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text] for CNR, CNRA, NPW, NPWE, NPWi, NPWEi, CHO, and CHOi, respectively.

摘要

本研究的目的是比较人类读者对计算机断层扫描(CT)低对比度的可检测性与基于观察者模型的图像质量替代指标。在一台先进的CT扫描仪(西门子Force)上对具有一系列低对比度信号(五种对比度、三种尺寸)的体模进行成像。使用滤波反投影和先进的模型迭代重建方法对图像进行重建,并由11名读者采用二选一强制选择法进行评估。同时,估计对比度噪声比(CNR)、面积加权CNR(CNRA)以及基于观察者模型的指标,包括非白化(NPW)匹配滤波器、带眼滤波器的NPW(NPWE)、带内部噪声的NPW、带眼滤波器和内部噪声的NPW(NPWEi)、通道化霍特林观察者(CHO)以及带内部噪声的CHO(CHOi)。相关系数(皮尔逊和斯皮尔曼)、线性判别误差[公式:见原文]以及置信区间大小[公式:见原文]分别用于确定相关性、重建算法的恰当表征以及模型精度。皮尔逊(斯皮尔曼)相关性分别为0.36(0.33)、0.83(0.84)、0.84(0.86)、0.86(0.88)、0.86(0.91)、0.88(0.90)、0.85(0.89)和0.87(0.84),[公式:见原文]分别为0.25、0.15、0.2、0.25、0.3、0.25、0.4和0.45,[公式:见原文]对于CNR、CNRA、NPW、NPWE、NPWi、NPWEi、CHO和CHOi分别为[公式:见原文]、[公式:见原文]、[公式:见原文]、[公式:见原文]、[公式:见原文]、[公式:见原文]、[公式:见原文]和[公式:见原文]。

相似文献

1
Correlation between human detection accuracy and observer model-based image quality metrics in computed tomography.
J Med Imaging (Bellingham). 2016 Jul;3(3):035506. doi: 10.1117/1.JMI.3.3.035506. Epub 2016 Sep 22.
4
Estimating detectability index : development and validation of an automated methodology.
J Med Imaging (Bellingham). 2018 Jul;5(3):031403. doi: 10.1117/1.JMI.5.3.031403. Epub 2017 Dec 11.
5
Objective assessment of low contrast detectability in computed tomography with Channelized Hotelling Observer.
Phys Med. 2016 Jan;32(1):76-83. doi: 10.1016/j.ejmp.2015.09.011. Epub 2015 Oct 26.
9
Low contrast detectability performance of model observers based on CT phantom images: kVp influence.
Phys Med. 2015 Nov;31(7):798-807. doi: 10.1016/j.ejmp.2015.04.012. Epub 2015 May 13.
10
Direct estimation and correction of bias from temporally variable non-stationary noise in a channelized Hotelling model observer.
Phys Med Biol. 2016 Aug 7;61(15):5606-20. doi: 10.1088/0031-9155/61/15/5606. Epub 2016 Jul 6.

引用本文的文献

1
Image quality in diagnostic radiology: a guide to methodologies for radiologists.
Radiol Bras. 2025 Apr 11;58:e20240088. doi: 10.1590/0100-3984.2024.0088-en. eCollection 2025 Jan-Dec.
4
5
Evaluating Machine Learning-Based MRI Reconstruction Using Digital Image Quality Phantoms.
Bioengineering (Basel). 2024 Jun 15;11(6):614. doi: 10.3390/bioengineering11060614.
8
Evaluation of Image Quality and Detectability of Deep Learning Image Reconstruction (DLIR) Algorithm in Single- and Dual-energy CT.
J Digit Imaging. 2023 Aug;36(4):1390-1407. doi: 10.1007/s10278-023-00806-z. Epub 2023 Apr 18.
10
Iterative reconstruction with multifrequency signal recognition technology to improve low-contrast detectability: A phantom study.
Acta Radiol Open. 2022 Jun 17;11(6):20584601221109919. doi: 10.1177/20584601221109919. eCollection 2022 Jun.

本文引用的文献

1
Visual-search observers for assessing tomographic x-ray image quality.
Med Phys. 2016 Mar;43(3):1563-75. doi: 10.1118/1.4942485.
2
Anthropomorphic model observer performance in three-dimensional detection task for low-contrast computed tomography.
J Med Imaging (Bellingham). 2016 Jan;3(1):011009. doi: 10.1117/1.JMI.3.1.011009. Epub 2015 Dec 29.
8
Task-based measures of image quality and their relation to radiation dose and patient risk.
Phys Med Biol. 2015 Jan 21;60(2):R1-75. doi: 10.1088/0031-9155/60/2/R1. Epub 2015 Jan 7.
9
Evaluating iterative reconstruction performance in computed tomography.
Med Phys. 2014 Dec;41(12):121913. doi: 10.1118/1.4901670.
10
Exact confidence intervals for channelized Hotelling observer performance in image quality studies.
IEEE Trans Med Imaging. 2015 Feb;34(2):453-64. doi: 10.1109/TMI.2014.2360496. Epub 2014 Sep 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验