Poludniowski Gavin, Titternes Rebecca, Thor Daniel
Department of Nuclear Medicine and Medical Physics, Karolinska University Hospital, Stockholm, Sweden.
Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.
Med Phys. 2025 Apr;52(4):2106-2122. doi: 10.1002/mp.17599. Epub 2025 Jan 8.
Modern reconstruction algorithms for computed tomography (CT) can exhibit nonlinear properties, including non-stationarity of noise and contrast dependence of both noise and spatial resolution. Model observers have been recommended as a tool for the task-based assessment of image quality (Samei E et al., Med Phys. 2019; 46(11): e735-e756), but the common Fourier domain approach to their calculation assumes quasi-stationarity.
A practical spatial-domain approach is proposed for the calculation of the nonprewhitening (NPW) family of model observers in CT, avoiding the disadvantages of the Fourier domain. The methodology avoids explicit estimation of a noise covariance matrix. A formula is also provided for the uncertainty on estimates of detectability index, for a given number of slices and repeat scans. The purpose of this work is to demonstrate the method and provide comparisons to the conventional Fourier approach for both iterative reconstruction (IR) and a deep Learning-based reconstruction (DLR) algorithm.
Acquisitions were made on a Revolution CT scanner (GE Healthcare, Waukesha, Wisconsin, USA) and reconstructed using the vendor's IR and DLR algorithms (ASiR-V and TrueFidelity). Several reconstruction kernels were investigated (Standard, Lung, and Bone for IR and Standard for DLR). An in-house developed phantom with two flat contrast levels (2 and 8 mgI/mL) and varying feature size (1-10 mm diameter) was used. Two single-energy protocols (80 and 120 kV) were investigated with two dose levels (CTDI = 5 and 13 mGy). The spatial domain calculations relied on repeated scanning, region-of-interest placement and simple operations with image matrices. No more repeat scans were utilized than required for Fourier domain estimations. Fourier domain calculations were made using techniques described in a previous publication (Thor D et al., Med Phys. 2023;50(5):2775-2786). Differences between the calculations in the two domains were assessed using the normalized root-mean-square discrepancy (NMRSD).
Fourier domain calculations agreed closely with those in the spatial domain for all zero-strength IR reconstructions, which most closely resemble traditional filtered backprojection. The Fourier-based calculations, however, displayed higher detectability compared to those in the spatial domain for IR with strong iterative strength and for the DLR algorithm. The NRMSD remained within 10% for the NPW model observer without eye filter, but reached larger values when an eye filter was included. The formula for the uncertainty on the detectability index was validated by bootstrap estimates.
A practical methodology was demonstrated for calculating NPW observers in the spatial domain. In addition to being a valuable tool for verifying the applicability of typical Fourier-based methodologies, it lends itself to routine calculations for features embedded in a phantom. Higher estimates of detectability were observed when adopting the Fourier domain methodology for IR and for a DLR algorithm, demonstrating that use of the Fourier domain can indicate greater benefit to noise suppression than suggested by spatial domain calculations. This is consistent with the results of previous authors for the Fourier domain, who have compared to human and other model observers, but not, as in this study, to the NPW model observer calculated in the spatial domain.
现代计算机断层扫描(CT)重建算法可能呈现非线性特性,包括噪声的非平稳性以及噪声和空间分辨率的对比度依赖性。模型观察者已被推荐作为基于任务的图像质量评估工具(Samei E等人,《医学物理》。2019年;46(11): e735 - e756),但其常见的傅里叶域计算方法假定为准平稳性。
提出一种实用的空间域方法来计算CT中模型观察者的非白化(NPW)族,避免傅里叶域的缺点。该方法避免了对噪声协方差矩阵的显式估计。还给出了在给定切片数量和重复扫描次数下,可检测性指数估计值不确定性的公式。这项工作的目的是演示该方法,并将其与传统傅里叶方法在迭代重建(IR)和基于深度学习的重建(DLR)算法方面进行比较。
在Revolution CT扫描仪(美国威斯康星州沃基沙市通用电气医疗集团)上进行采集,并使用供应商的IR和DLR算法(ASiR - V和TrueFidelity)进行重建。研究了几种重建核(IR的标准、肺和骨核以及DLR的标准核)。使用了一个内部开发的体模,其具有两个平坦的对比度水平(2和8 mgI/mL)以及不同的特征尺寸(直径1 - 10毫米)。研究了两种单能量协议(80和120 kV)以及两个剂量水平(CTDI = 5和13 mGy)。空间域计算依赖于重复扫描、感兴趣区域放置以及图像矩阵的简单操作。所使用的重复扫描次数不超过傅里叶域估计所需的次数。傅里叶域计算使用先前发表的文献(Thor D等人,《医学物理》。2023年;50(5):2775 - 2786)中描述的技术进行。使用归一化均方根差异(NMRSD)评估两个域中计算结果的差异。
对于所有零强度的IR重建,傅里叶域计算与空间域计算结果非常接近,这些重建与传统滤波反投影最为相似。然而,对于具有强迭代强度(strong iterative strength)的IR和DLR算法,基于傅里叶的计算显示出比空间域计算更高的可检测性。对于没有眼滤波器的NPW模型观察者,NMRSD保持在10%以内,但当包含眼滤波器时,NMRSD会达到更大的值。通过自助估计验证了可检测性指数不确定性的公式。
演示了一种在空间域计算NPW观察者的实用方法。除了是验证基于典型傅里叶方法适用性的有价值工具外,它还适用于体模中嵌入特征的常规计算。在对IR和DLR算法采用傅里叶域方法时,观察到更高的可检测性估计值,这表明使用傅里叶域可能比空间域计算所显示的对噪声抑制有更大益处。这与先前作者关于傅里叶域的结果一致,他们将其与人类和其他模型观察者进行了比较,但不像本研究那样与在空间域计算的NPW模型观察者进行比较。