Suppr超能文献

血流中颗粒的直接追踪与边缘化定量

Direct Tracking of Particles and Quantification of Margination in Blood Flow.

作者信息

Carboni Erik J, Bognet Brice H, Bouchillon Grant M, Kadilak Andrea L, Shor Leslie M, Ward Michael D, Ma Anson W K

机构信息

Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut.

Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut.

出版信息

Biophys J. 2016 Oct 4;111(7):1487-1495. doi: 10.1016/j.bpj.2016.08.026.

Abstract

Margination refers to the migration of particles toward blood vessel walls during blood flow. Understanding the mechanisms that lead to margination will aid in tailoring the attributes of drug-carrying particles for effective drug delivery. Most previous studies evaluated the margination propensity of these particles via an adhesion mechanism, i.e., by measuring the number of particles that adhered to the channel wall. Although particle adhesion and margination are related, adhesion also depends on other factors. In this study, we quantified the margination propensity of particles of varying diameters (0.53, 0.84, and 2.11 μm) and apparent wall shear rates (30, 61, and 121 s) by directly tracking fluorescent particles flowing through a microfluidic channel. The margination parameter, M, is defined as the total number of particles found within the cell-free layers normalized by the total number of particles that passed through the channel. In this study, an M-value of 0.2 indicated no margination, which was observed for all particle sizes in water. In the case of blood, larger particles were found to have higher M-values and thus marginated more effectively than smaller particles. The corresponding M-values at the device outlet were 0.203, 0.223, and 0.285 for 0.53-, 0.84-, and 2.11-μm particles, respectively. At the inlet, the M-values for all particle sizes in blood were <0.2, suggesting that non-fully-developed flow and constriction may lead to demargination. For particle velocities transverse to the flow direction (v), all particle sizes showed a larger standard deviation of v as well as a higher effective diffusivity when the particles were suspended in blood relative to water. These higher values are attributed to collisions between the blood cells and particles, further supporting recent simulation results. In terms of flow rates, for a given particle size, the higher the flow rate, the higher the M-value.

摘要

边缘化是指在血流过程中颗粒向血管壁的迁移。了解导致边缘化的机制将有助于定制载药颗粒的属性以实现有效的药物递送。以前的大多数研究通过粘附机制评估这些颗粒的边缘化倾向,即通过测量粘附在通道壁上的颗粒数量。虽然颗粒粘附和边缘化有关,但粘附还取决于其他因素。在本研究中,我们通过直接跟踪流经微流控通道的荧光颗粒,量化了不同直径(0.53、0.84和2.11μm)和表观壁面剪切速率(30、61和121 s⁻¹)的颗粒的边缘化倾向。边缘化参数M定义为无细胞层内发现的颗粒总数除以通过通道的颗粒总数。在本研究中,M值为0.2表示没有边缘化,在水中所有粒径的颗粒均观察到这种情况。在血液中,发现较大的颗粒具有较高的M值,因此比较小的颗粒更有效地发生边缘化。对于0.53μm、0.84μm和2.11μm的颗粒,在设备出口处相应的M值分别为0.203、0.223和0.285。在入口处,血液中所有粒径颗粒的M值均<0.2,这表明未充分发展的流动和收缩可能导致去边缘化。对于垂直于流动方向的颗粒速度(v),当颗粒悬浮在血液中时,相对于水,所有粒径的颗粒均显示出较大的v标准差以及较高的有效扩散率。这些较高的值归因于血细胞与颗粒之间的碰撞,这进一步支持了最近的模拟结果。就流速而言,对于给定的粒径,流速越高,M值越高。

相似文献

2
Margination of 2D Platelet Microparticles in Blood.血液中二维血小板微粒的边缘化
ACS Macro Lett. 2023 Mar 21;12(3):344-349. doi: 10.1021/acsmacrolett.2c00718. Epub 2023 Feb 23.

引用本文的文献

1
The flow of anisotropic nanoparticles in solution and in blood.各向异性纳米颗粒在溶液和血液中的流动。
Exploration (Beijing). 2023 Oct 10;3(6):20220075. doi: 10.1002/EXP.20220075. eCollection 2023 Dec.
2
Cellular Blood Flow Modeling with HemoCell.使用 HemoCell 进行细胞血流建模。
Methods Mol Biol. 2024;2716:351-368. doi: 10.1007/978-1-0716-3449-3_16.
3
Shear induced diffusion of platelets revisited.重新审视剪切诱导的血小板扩散。
Front Physiol. 2022 Oct 13;13:985905. doi: 10.3389/fphys.2022.985905. eCollection 2022.
4
The interaction of vortical flows with red cells in venous valve mimics.静脉瓣膜模型中涡流与红细胞的相互作用。
Biomicrofluidics. 2022 Mar 3;16(2):024103. doi: 10.1063/5.0078337. eCollection 2022 Mar.
8
Advances in Nanomaterials for Brain Microscopy.用于脑显微镜检查的纳米材料进展
Nano Res. 2018 Oct;11(10):5144-5172. doi: 10.1007/s12274-018-2145-2. Epub 2018 Aug 8.
9
Quantifying Platelet Margination in Diabetic Blood Flow.量化糖尿病血流中的血小板靠边现象。
Biophys J. 2018 Oct 2;115(7):1371-1382. doi: 10.1016/j.bpj.2018.08.031. Epub 2018 Aug 30.

本文引用的文献

4
8
Advances in an active and passive targeting to tumor and adipose tissues.肿瘤和脂肪组织主动及被动靶向的进展。
Expert Opin Drug Deliv. 2015 Jan;12(1):41-52. doi: 10.1517/17425247.2015.955847. Epub 2014 Nov 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验