Suppr超能文献

快速进化的质体-细胞核酶复合物中的正向选择

Positive Selection in Rapidly Evolving Plastid-Nuclear Enzyme Complexes.

作者信息

Rockenbach Kate, Havird Justin C, Monroe J Grey, Triant Deborah A, Taylor Douglas R, Sloan Daniel B

机构信息

Department of Biology, Colorado State University, Fort Collins, Colorado 80523.

Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, Colorado 80523.

出版信息

Genetics. 2016 Dec;204(4):1507-1522. doi: 10.1534/genetics.116.188268. Epub 2016 Oct 5.

Abstract

Rates of sequence evolution in plastid genomes are generally low, but numerous angiosperm lineages exhibit accelerated evolutionary rates in similar subsets of plastid genes. These genes include clpP1 and accD, which encode components of the caseinolytic protease (CLP) and acetyl-coA carboxylase (ACCase) complexes, respectively. Whether these extreme and repeated accelerations in rates of plastid genome evolution result from adaptive change in proteins (i.e., positive selection) or simply a loss of functional constraint (i.e., relaxed purifying selection) is a source of ongoing controversy. To address this, we have taken advantage of the multiple independent accelerations that have occurred within the genus Silene (Caryophyllaceae) by examining phylogenetic and population genetic variation in the nuclear genes that encode subunits of the CLP and ACCase complexes. We found that, in species with accelerated plastid genome evolution, the nuclear-encoded subunits in the CLP and ACCase complexes are also evolving rapidly, especially those involved in direct physical interactions with plastid-encoded proteins. A massive excess of nonsynonymous substitutions between species relative to levels of intraspecific polymorphism indicated a history of strong positive selection (particularly in CLP genes). Interestingly, however, some species are likely undergoing loss of the native (heteromeric) plastid ACCase and putative functional replacement by a duplicated cytosolic (homomeric) ACCase. Overall, the patterns of molecular evolution in these plastid-nuclear complexes are unusual for anciently conserved enzymes. They instead resemble cases of antagonistic coevolution between pathogens and host immune genes. We discuss a possible role of plastid-nuclear conflict as a novel cause of accelerated evolution.

摘要

质体基因组的序列进化速率通常较低,但许多被子植物谱系在质体基因的相似子集中表现出加速的进化速率。这些基因包括clpP1和accD,它们分别编码酪蛋白水解蛋白酶(CLP)和乙酰辅酶A羧化酶(ACCase)复合物的组成部分。质体基因组进化速率的这些极端且反复的加速是由蛋白质的适应性变化(即正选择)导致的,还是仅仅是功能限制的丧失(即放松的纯化选择),这一直是争议的来源。为了解决这个问题,我们利用了蝇子草属(石竹科)内发生的多次独立加速事件,通过研究编码CLP和ACCase复合物亚基的核基因的系统发育和群体遗传变异。我们发现,在质体基因组进化加速的物种中,CLP和ACCase复合物中核编码的亚基也在快速进化,特别是那些与质体编码蛋白直接发生物理相互作用的亚基。相对于种内多态性水平,物种间非同义替换的大量过剩表明存在强烈的正选择历史(特别是在CLP基因中)。然而,有趣的是,一些物种可能正在经历原生(异聚体)质体ACCase的丧失,并可能被复制的胞质(同聚体)ACCase进行功能替代。总体而言,这些质体 - 核复合物中的分子进化模式对于古老保守的酶来说是不寻常的。相反,它们类似于病原体与宿主免疫基因之间的拮抗协同进化的情况。我们讨论了质体 - 核冲突作为加速进化新原因的可能作用。

相似文献

1
Positive Selection in Rapidly Evolving Plastid-Nuclear Enzyme Complexes.
Genetics. 2016 Dec;204(4):1507-1522. doi: 10.1534/genetics.116.188268. Epub 2016 Oct 5.
2
Extreme variation in rates of evolution in the plastid Clp protease complex.
Plant J. 2019 Apr;98(2):243-259. doi: 10.1111/tpj.14208. Epub 2019 Jan 28.
3
Gene duplication and rate variation in the evolution of plastid ACCase and Clp genes in angiosperms.
Mol Phylogenet Evol. 2022 Mar;168:107395. doi: 10.1016/j.ympev.2022.107395. Epub 2022 Jan 13.
4
Rapid sequence evolution is associated with genetic incompatibilities in the plastid Clp complex.
Plant Mol Biol. 2022 Feb;108(3):277-287. doi: 10.1007/s11103-022-01241-4. Epub 2022 Jan 17.
5
Cytonuclear interactions and relaxed selection accelerate sequence evolution in organelle ribosomes.
Mol Biol Evol. 2014 Mar;31(3):673-82. doi: 10.1093/molbev/mst259. Epub 2013 Dec 13.
6
Causes and Consequences of Rapidly Evolving mtDNA in a Plant Lineage.
Genome Biol Evol. 2017 Feb 1;9(2):323-336. doi: 10.1093/gbe/evx010.
7
Phylogenetic Analysis of Nucleus-Encoded Acetyl-CoA Carboxylases Targeted at the Cytosol and Plastid of Algae.
PLoS One. 2015 Jul 1;10(7):e0131099. doi: 10.1371/journal.pone.0131099. eCollection 2015.
9
A recurring syndrome of accelerated plastid genome evolution in the angiosperm tribe Sileneae (Caryophyllaceae).
Mol Phylogenet Evol. 2014 Mar;72:82-9. doi: 10.1016/j.ympev.2013.12.004. Epub 2013 Dec 25.

引用本文的文献

3
Genome-wide patterns of homoeologous gene flow in allotetraploid coffee.
Appl Plant Sci. 2024 Jun 14;12(4):e11584. doi: 10.1002/aps3.11584. eCollection 2024 Jul-Aug.
4
Chromosome-Level Genome Assembly for the Angiosperm Silene conica.
Genome Biol Evol. 2023 Nov 1;15(11). doi: 10.1093/gbe/evad192.
7
Mutation pressure, drift, and the pace of molecular coevolution.
Proc Natl Acad Sci U S A. 2023 Jul 4;120(27):e2306741120. doi: 10.1073/pnas.2306741120. Epub 2023 Jun 26.
8
Plastome evolution in the East Asian lobelias (Lobelioideae) using phylogenomic and comparative analyses.
Front Plant Sci. 2023 Mar 31;14:1144406. doi: 10.3389/fpls.2023.1144406. eCollection 2023.
9
Mito-nuclear coevolution and phylogenetic artifacts: the case of bivalve mollusks.
Sci Rep. 2022 Jun 30;12(1):11040. doi: 10.1038/s41598-022-15076-y.

本文引用的文献

1
Plastid-Nuclear Interaction and Accelerated Coevolution in Plastid Ribosomal Genes in Geraniaceae.
Genome Biol Evol. 2016 Jun 27;8(6):1824-38. doi: 10.1093/gbe/evw115.
2
Regulation and structure of the heteromeric acetyl-CoA carboxylase.
Biochim Biophys Acta. 2016 Sep;1861(9 Pt B):1207-1213. doi: 10.1016/j.bbalip.2016.04.004. Epub 2016 Apr 16.
9
The Complete Sequence of the Acacia ligulata Chloroplast Genome Reveals a Highly Divergent clpP1 Gene.
PLoS One. 2015 May 8;10(5):e0125768. doi: 10.1371/journal.pone.0125768. eCollection 2015.
10
Maternal transmission, sex ratio distortion, and mitochondria.
Proc Natl Acad Sci U S A. 2015 Aug 18;112(33):10162-8. doi: 10.1073/pnas.1421391112. Epub 2015 Apr 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验