Jan Rahmatullah, Hashmi Syed Salman, Asif Saleem, Bilal Saqib, Waqas Muhammad, Abdelbacki Ashraf M M, Kim Kyung-Min, Al-Harrasi Ahmed, Asaf Sajjad
Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman.
Coastal Agriculture Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea.
Int J Mol Sci. 2025 Apr 9;26(8):3527. doi: 10.3390/ijms26083527.
In the present study, the sequencing and analysis of the complete chloroplast genome of and its comparison with related species in the Cleomaceae family were carried out. The genome spans 157,714 base pairs (bp) and follows the typical chloroplast structure, consisting of a large single-copy (LSC) region (87,506 bp), a small single-copy (SSC) region (18,598 bp), and two inverted repeats (IRs) (25,805 bp each). We identified a total of 129 genes, including 84 protein-coding genes, 8 ribosomal RNA (rRNA) genes, and 37 transfer RNA (tRNA) genes. Our analysis of simple sequence repeats (SSRs) and repetitive elements revealed 91 SSRs, with a high number of A/T-rich mononucleotide repeats, which are common in chloroplast genomes. We also observed forward, palindromic, and tandem repeats, which are known to play roles in genome stability and evolution. When comparing with its relatives, we identified several highly variable regions, including 1, 2, and H-A, marking them as propitious molecular markers for the identification of species as well as phylogenetic studies. We examined the inverted repeat (IR) boundaries and found minor shifts in comparison to the other species, particularly in the gene region, which is a known hotspot for evolutionary changes. Additionally, our analysis of selective pressures (Ka/Ks ratios) showed that most genes are under strong purifying selection, preserving their essential functions. A sliding window analysis of nucleotide diversity (Pi) identified several regions with high variability, such as H-A, 1, IG, and L-F, highlighting their potential for use in evolutionary and population studies. Finally, our phylogenetic analysis, using complete chloroplast genomes from species within Cleomaceae, Brassicaceae, and Capparaceae, confirmed that belongs within the Cleomaceae family. It showed a close evolutionary relationship with and , supporting previous taxonomic classifications. The findings from the current research offer invaluable insights regarding genomic structure, evolutionary adaptations, and phylogenetic relationships of , providing a foundation for future research on species evolution, taxonomy, and conservation within the Cleomaceae family.
在本研究中,对[物种名称]的叶绿体全基因组进行了测序和分析,并将其与白花菜科的相关物种进行了比较。该基因组跨度为157,714个碱基对(bp),遵循典型的叶绿体结构,由一个大单拷贝(LSC)区域(87,506 bp)、一个小单拷贝(SSC)区域(18,598 bp)和两个反向重复序列(IRs)(每个25,805 bp)组成。我们共鉴定出129个基因,包括84个蛋白质编码基因、8个核糖体RNA(rRNA)基因和37个转运RNA(tRNA)基因。我们对简单序列重复(SSR)和重复元件的分析揭示了91个SSR,其中富含A/T的单核苷酸重复数量较多,这在叶绿体基因组中很常见。我们还观察到正向、回文和串联重复序列,已知它们在基因组稳定性和进化中发挥作用。在将[物种名称]与其亲属进行比较时,我们确定了几个高度可变区域,包括1、2和H - A,将它们标记为用于物种鉴定以及系统发育研究的有利分子标记。我们检查了反向重复(IR)边界,发现与其他物种相比有微小变化,特别是在[基因名称]区域,这是一个已知的进化变化热点。此外,我们对选择压力(Ka/Ks比率)的分析表明,大多数基因处于强烈的纯化选择之下,保留了它们的基本功能。核苷酸多样性(Pi)的滑动窗口分析确定了几个高变异性区域,如H - A、1、IG和L - F,突出了它们在进化和种群研究中的应用潜力。最后,我们使用来自白花菜科、十字花科和山柑科物种的叶绿体全基因组进行的系统发育分析证实,[物种名称]属于白花菜科。它与[物种名称1]和[物种名称2]显示出密切的进化关系,支持了先前的分类学分类。当前研究的结果为[物种名称]的基因组结构、进化适应性和系统发育关系提供了宝贵的见解,为未来白花菜科物种进化、分类学和保护研究奠定了基础。