Suppr超能文献

视觉皮质纹状体环路破坏对海马旁回位置区神经处理的影响。

Impact of Visual Corticostriatal Loop Disruption on Neural Processing within the Parahippocampal Place Area.

作者信息

Nasr Shahin, Rosas Herminia D

机构信息

Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts 02129, Department of Radiology, Harvard Medical School, Boston, Massachusetts 02114,

Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts 02129, Department of Neurology, Harvard Medical School, Boston, Massachusetts 02114, and Center for Neuro-imaging of Aging and Neurodegenerative Diseases, Massachusetts General Hospital, Boston, Massachusetts 02129.

出版信息

J Neurosci. 2016 Oct 5;36(40):10456-10471. doi: 10.1523/JNEUROSCI.0741-16.2016.

Abstract

UNLABELLED

The caudate nucleus is a part of the visual corticostriatal loop (VCSL), receiving input from different visual areas and projecting back to the same cortical areas via globus pallidus, substantia nigra, and thalamus. Despite perceptual and navigation impairments in patients with VCSL disruption due to caudate atrophy (e.g., Huntington's disease, HD), the relevance of the caudate nucleus and VCSL on cortical visual processing is not fully understood. In a series of fMRI experiments, we found that the caudate showed a stronger functional connection to parahippocampal place area (PPA) compared with adjacent regions (e.g., fusiform face area, FFA) within the temporal visual cortex. Consistent with this functional link, the caudate showed a higher response to scenes compared with faces, similar to the PPA. Testing the impact of VCSL disruption on neural processes within PPA, HD patients showed reduced scene-selective activity within PPA compared with healthy matched controls. In contrast, the level of selective activity in adjacent cortical and subcortical face-selective areas (i.e., FFA and amygdala) remained intact. These results show some of the first evidence for the direct impact and potential clinical significance of VCSL on the generation of "selective" activity within PPA.

SIGNIFICANCE STATEMENT

Visual perception is often considered the product of a multistage feedforward neural processing between visual cortical areas, ignoring the likely impact of corticosubcortical loops on this process. Here, we provide evidence for the contribution of visual corticostriatal loop and the caudate nucleus on generating selective response within parahippocampal place area (PPA). Our results show that disruption of this loop in Huntington's disease patients reduces the level of selective activity within PPA, which may lead to related perceptual impairments in these patients.

摘要

未标注

尾状核是视觉皮质纹状体环路(VCSL)的一部分,接收来自不同视觉区域的输入,并通过苍白球、黑质和丘脑投射回相同的皮质区域。尽管由于尾状核萎缩导致VCSL中断的患者存在感知和导航障碍(如亨廷顿舞蹈病,HD),但尾状核和VCSL对皮质视觉处理的相关性尚未完全了解。在一系列功能磁共振成像实验中,我们发现与颞叶视觉皮质内的相邻区域(如梭状回面孔区,FFA)相比,尾状核与海马旁回位置区(PPA)表现出更强的功能连接。与这种功能联系一致,与面孔相比,尾状核对场景表现出更高的反应,类似于PPA。测试VCSL中断对PPA内神经过程的影响,HD患者与健康匹配对照组相比,PPA内的场景选择性活动降低。相比之下,相邻皮质和皮质下面孔选择性区域(即FFA和杏仁核)的选择性活动水平保持不变。这些结果首次证明了VCSL对PPA内“选择性”活动产生的直接影响和潜在临床意义。

意义声明

视觉感知通常被认为是视觉皮质区域之间多级前馈神经处理的产物,而忽略了皮质-皮质下环路对这一过程的可能影响。在这里,我们提供了视觉皮质纹状体环路和尾状核在海马旁回位置区(PPA)产生选择性反应方面所做贡献的证据。我们的结果表明,亨廷顿舞蹈病患者中该环路的中断会降低PPA内的选择性活动水平,这可能导致这些患者出现相关的感知障碍。

相似文献

1
Impact of Visual Corticostriatal Loop Disruption on Neural Processing within the Parahippocampal Place Area.
J Neurosci. 2016 Oct 5;36(40):10456-10471. doi: 10.1523/JNEUROSCI.0741-16.2016.
2
Regulation of brain activity in the fusiform face and parahippocampal place areas in 7-11-year-old children.
Brain Cogn. 2013 Mar;81(2):203-14. doi: 10.1016/j.bandc.2012.11.003. Epub 2012 Dec 20.
3
How reliable are visual context effects in the parahippocampal place area?
Cereb Cortex. 2010 Feb;20(2):294-303. doi: 10.1093/cercor/bhp099. Epub 2009 May 20.
4
Selectivity for mid-level properties of faces and places in the fusiform face area and parahippocampal place area.
Eur J Neurosci. 2019 Jun;49(12):1587-1596. doi: 10.1111/ejn.14327. Epub 2019 Jan 20.
5
Dissociable Neural Systems for Recognizing Places and Navigating through Them.
J Neurosci. 2018 Nov 28;38(48):10295-10304. doi: 10.1523/JNEUROSCI.1200-18.2018. Epub 2018 Oct 22.
6
Neural representation of geometry and surface properties in object and scene perception.
Neuroimage. 2017 Aug 15;157:586-597. doi: 10.1016/j.neuroimage.2017.06.043. Epub 2017 Jun 21.
7
A common neural substrate for processing scenes and egomotion-compatible visual motion.
Brain Struct Funct. 2020 Sep;225(7):2091-2110. doi: 10.1007/s00429-020-02112-8. Epub 2020 Jul 9.
8
"What" precedes "which": developmental neural tuning in face- and place-related cortex.
Cereb Cortex. 2011 Sep;21(9):1963-80. doi: 10.1093/cercor/bhq269. Epub 2011 Jan 21.
10
fMRI neurofeedback of higher visual areas and perceptual biases.
Neuropsychologia. 2016 May;85:208-15. doi: 10.1016/j.neuropsychologia.2016.03.031. Epub 2016 Mar 26.

引用本文的文献

1
Decreased scene-selective activity within the posterior intraparietal cortex in amblyopic adults.
Front Neurosci. 2025 Feb 28;19:1527148. doi: 10.3389/fnins.2025.1527148. eCollection 2025.
3
Reduced dorsal fronto-striatal connectivity at rest in anorexia nervosa.
Psychol Med. 2024 Jul;54(9):2200-2209. doi: 10.1017/S003329172400031X. Epub 2024 Mar 18.
4
Are you angry? Neural basis of impaired facial expression recognition in pre-manifest Huntington's.
Parkinsonism Relat Disord. 2023 Apr;109:105289. doi: 10.1016/j.parkreldis.2023.105289. Epub 2023 Jan 20.
5
Interdependent self-construal predicts increased gray matter volume of scene processing regions in the brain.
Biol Psychol. 2021 Apr;161:108050. doi: 10.1016/j.biopsycho.2021.108050. Epub 2021 Feb 13.
7
Scene Perception in the Human Brain.
Annu Rev Vis Sci. 2019 Sep 15;5:373-397. doi: 10.1146/annurev-vision-091718-014809. Epub 2019 Jun 21.
8
Complex spatial and temporally defined myelin and axonal degeneration in Huntington disease.
Neuroimage Clin. 2018 Feb 19;20:236-242. doi: 10.1016/j.nicl.2018.01.029. eCollection 2018.

本文引用的文献

1
3D Shape Perception in Posterior Cortical Atrophy: A Visual Neuroscience Perspective.
J Neurosci. 2015 Sep 16;35(37):12673-92. doi: 10.1523/JNEUROSCI.3651-14.2015.
2
Increased Visual Stimulation Systematically Decreases Activity in Lateral Intermediate Cortex.
Cereb Cortex. 2015 Oct;25(10):4009-28. doi: 10.1093/cercor/bhu290. Epub 2014 Dec 5.
3
4
Monkey cortex through fMRI glasses.
Neuron. 2014 Aug 6;83(3):533-50. doi: 10.1016/j.neuron.2014.07.015.
5
Thinking outside the box: rectilinear shapes selectively activate scene-selective cortex.
J Neurosci. 2014 May 14;34(20):6721-35. doi: 10.1523/JNEUROSCI.4802-13.2014.
7
Visual system integrity and cognition in early Huntington's disease.
Eur J Neurosci. 2014 Jul;40(2):2417-26. doi: 10.1111/ejn.12575. Epub 2014 Apr 3.
8
The visual corticostriatal loop through the tail of the caudate: circuitry and function.
Front Syst Neurosci. 2013 Dec 6;7:104. doi: 10.3389/fnsys.2013.00104. eCollection 2013.
9
Caudate resting connectivity predicts implicit probabilistic sequence learning.
Brain Connect. 2013;3(6):601-10. doi: 10.1089/brain.2013.0169. Epub 2013 Nov 14.
10
A network for scene processing in the macaque temporal lobe.
Neuron. 2013 Aug 21;79(4):766-81. doi: 10.1016/j.neuron.2013.06.015. Epub 2013 Jul 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验