Suppr超能文献

细菌基因表达的成本与效益比较

A Comparison of the Costs and Benefits of Bacterial Gene Expression.

作者信息

Price Morgan N, Wetmore Kelly M, Deutschbauer Adam M, Arkin Adam P

机构信息

Environmental Genomics and Systems Biology, Lawrence Berkeley National Lab, Berkeley, California, United States of America.

出版信息

PLoS One. 2016 Oct 6;11(10):e0164314. doi: 10.1371/journal.pone.0164314. eCollection 2016.

Abstract

To study how a bacterium allocates its resources, we compared the costs and benefits of most (86%) of the proteins in Escherichia coli K-12 during growth in minimal glucose medium. The cost or investment in each protein was estimated from ribosomal profiling data, and the benefit of each protein was measured by assaying a library of transposon mutants. We found that proteins that are important for fitness are usually highly expressed, and 95% of these proteins are expressed at above 13 parts per million (ppm). Conversely, proteins that do not measurably benefit the host (with a benefit of less than 5% per generation) tend to be weakly expressed, with a median expression of 13 ppm. In aggregate, genes with no detectable benefit account for 31% of protein production, or about 22% if we correct for genetic redundancy. Although some of the apparently unnecessary expression could have subtle benefits in minimal glucose medium, the majority of the burden is due to genes that are important in other conditions. We propose that at least 13% of the cell's protein is "on standby" in case conditions change.

摘要

为了研究细菌如何分配其资源,我们比较了大肠杆菌K-12在基本葡萄糖培养基中生长期间大多数(86%)蛋白质的成本和收益。根据核糖体谱分析数据估算每种蛋白质的成本或投入,并通过检测转座子突变体文库来衡量每种蛋白质的收益。我们发现,对适应性重要的蛋白质通常高表达,其中95%的蛋白质表达水平高于百万分之十三(ppm)。相反,对宿主没有明显益处(每代收益小于5%)的蛋白质往往低表达,中位数表达水平为13 ppm。总体而言,没有可检测到益处的基因占蛋白质产量的31%,如果校正基因冗余,则约占22%。虽然一些明显不必要的表达在基本葡萄糖培养基中可能有微妙的益处,但大部分负担是由在其他条件下重要的基因造成的。我们提出,至少13%的细胞蛋白质处于“备用”状态,以防条件发生变化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/136b/5053530/aae1101ac3e6/pone.0164314.g001.jpg

相似文献

1
A Comparison of the Costs and Benefits of Bacterial Gene Expression.
PLoS One. 2016 Oct 6;11(10):e0164314. doi: 10.1371/journal.pone.0164314. eCollection 2016.
4
Effect of simulated microgravity on E. coli K12 MG1655 growth and gene expression.
PLoS One. 2013;8(3):e57860. doi: 10.1371/journal.pone.0057860. Epub 2013 Mar 5.
7
Gravity sensing by Escherichia coli.
Biosci Biotechnol Biochem. 2010;74(12):2511-4. doi: 10.1271/bbb.100531. Epub 2010 Dec 7.
8
YliH (BssR) and YceP (BssS) regulate Escherichia coli K-12 biofilm formation by influencing cell signaling.
Appl Environ Microbiol. 2006 Apr;72(4):2449-59. doi: 10.1128/AEM.72.4.2449-2459.2006.
9
A role for EIIA(Ntr) in controlling fluxes in the central metabolism of E. coli K12.
Biochim Biophys Acta. 2013 Dec;1833(12):2879-2889. doi: 10.1016/j.bbamcr.2013.07.011. Epub 2013 Jul 23.

引用本文的文献

1
CRP improves the survival and competitive fitness of Typhimurium under starvation by controlling the cellular maintenance rate.
J Bacteriol. 2024 Aug 22;206(8):e0001024. doi: 10.1128/jb.00010-24. Epub 2024 Jul 24.
2
Metabolic Profile of the Genome-Reduced Strain IIG-Bs-27-39: An Attractive Chassis for Recombinant Protein Production.
ACS Synth Biol. 2024 Jul 19;13(7):2199-2214. doi: 10.1021/acssynbio.4c00254. Epub 2024 Jul 9.
3
The Landscape and Perspectives of the Human Gut Metaproteomics.
Mol Cell Proteomics. 2024 May;23(5):100763. doi: 10.1016/j.mcpro.2024.100763. Epub 2024 Apr 10.
4
Whole genome-scale assessment of gene fitness of Novosphingobium aromaticavorans during spaceflight.
BMC Genomics. 2023 Dec 16;24(1):782. doi: 10.1186/s12864-023-09799-z.
5
Evaluating E. coli genome-scale metabolic model accuracy with high-throughput mutant fitness data.
Mol Syst Biol. 2023 Dec 6;19(12):e11566. doi: 10.15252/msb.202311566. Epub 2023 Oct 27.
6
Group A streptococci induce stronger M protein-fibronectin interaction when specific human antibodies are bound.
Front Microbiol. 2023 Jan 26;14:1069789. doi: 10.3389/fmicb.2023.1069789. eCollection 2023.
7
Three Novel Antisense Overlapping Genes in E. coli O157:H7 EDL933.
Microbiol Spectr. 2023 Feb 14;11(1):e0235122. doi: 10.1128/spectrum.02351-22. Epub 2022 Dec 19.
8
BW25113 Competent Cells Prepared Using a Simple Chemical Method Have Unmatched Transformation and Cloning Efficiencies.
Front Microbiol. 2022 Mar 24;13:838698. doi: 10.3389/fmicb.2022.838698. eCollection 2022.
9
Redefining fundamental concepts of transcription initiation in bacteria.
Nat Rev Genet. 2020 Nov;21(11):699-714. doi: 10.1038/s41576-020-0254-8. Epub 2020 Jul 14.
10
The size of the immune repertoire of bacteria.
Proc Natl Acad Sci U S A. 2020 Mar 10;117(10):5144-5151. doi: 10.1073/pnas.1903666117. Epub 2020 Feb 18.

本文引用的文献

1
Quantification and Classification of E. coli Proteome Utilization and Unused Protein Costs across Environments.
PLoS Comput Biol. 2016 Jun 28;12(6):e1004998. doi: 10.1371/journal.pcbi.1004998. eCollection 2016 Jun.
2
A Theoretical Lower Bound for Selection on the Expression Levels of Proteins.
Genome Biol Evol. 2016 Jul 2;8(6):1917-28. doi: 10.1093/gbe/evw126.
4
The quantitative and condition-dependent Escherichia coli proteome.
Nat Biotechnol. 2016 Jan;34(1):104-10. doi: 10.1038/nbt.3418. Epub 2015 Dec 7.
5
RegulonDB version 9.0: high-level integration of gene regulation, coexpression, motif clustering and beyond.
Nucleic Acids Res. 2016 Jan 4;44(D1):D133-43. doi: 10.1093/nar/gkv1156. Epub 2015 Nov 2.
6
Quantitative prediction of genome-wide resource allocation in bacteria.
Metab Eng. 2015 Nov;32:232-243. doi: 10.1016/j.ymben.2015.10.003. Epub 2015 Oct 21.
8
Mechanistic links between cellular trade-offs, gene expression, and growth.
Proc Natl Acad Sci U S A. 2015 Mar 3;112(9):E1038-47. doi: 10.1073/pnas.1416533112. Epub 2015 Feb 18.
10
Population diversification in a yeast metabolic program promotes anticipation of environmental shifts.
PLoS Biol. 2015 Jan 27;13(1):e1002042. doi: 10.1371/journal.pbio.1002042. eCollection 2015 Jan.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验