Suppr超能文献

一种新的绩效改进模型:在绩效指标数据分析中加入基准测试。

A New Performance Improvement Model: Adding Benchmarking to the Analysis of Performance Indicator Data.

作者信息

Al-Kuwaiti Ahmed, Homa Karen, Maruthamuthu Thennarasu

机构信息

Deanship of Quality and Academic Accreditation, University of Dammam, Saudi Arabia.

出版信息

Jt Comm J Qual Patient Saf. 2016;42(10):462-465. doi: 10.1016/s1553-7250(16)42062-3.

Abstract

BACKGROUND

A performance improvement model was developed that focuses on the analysis and interpretation of performance indicator (PI) data using statistical process control and benchmarking. PIs are suitable for comparison with benchmarks only if the data fall within the statistically accepted limit-that is, show only random variation. Specifically, if there is no significant special-cause variation over a period of time, then the data are ready to be benchmarked.

METHODS

The proposed Define, Measure, Control, Internal Threshold, and Benchmark model is adapted from the Define, Measure, Analyze, Improve, Control (DMAIC) model. The model consists of the following five steps: Step 1. Define the process; Step 2. Monitor and measure the variation over the period of time; Step 3. Check the variation of the process; if stable (no significant variation), go to Step 4; otherwise, control variation with the help of an action plan; Step 4. Develop an internal threshold and compare the process with it; Step 5.1. Compare the process with an internal benchmark; and Step 5.2. Compare the process with an external benchmark.

RESULTS

The steps are illustrated through the use of health care-associated infection (HAI) data collected for 2013 and 2014 from the Infection Control Unit, King Fahd Hospital, University of Dammam, Saudi Arabia.

CONCLUSION

Monitoring variation is an important strategy in understanding and learning about a process. In the example, HAI was monitored for variation in 2013, and the need to have a more predictable process prompted the need to control variation by an action plan. The action plan was successful, as noted by the shift in the 2014 data, compared to the historical average, and, in addition, the variation was reduced. The model is subject to limitations: For example, it cannot be used without benchmarks, which need to be calculated the same way with similar patient populations, and it focuses only on the "Analyze" part of the DMAIC model.

摘要

背景

开发了一种绩效改进模型,该模型侧重于使用统计过程控制和标杆管理来分析和解释绩效指标(PI)数据。只有当数据落在统计上可接受的范围内(即仅显示随机变化)时,绩效指标才适合与标杆进行比较。具体而言,如果在一段时间内没有显著的特殊原因变化,那么这些数据就可以用于标杆管理。

方法

所提出的定义、测量、控制、内部阈值和标杆模型改编自定义、测量、分析、改进、控制(DMAIC)模型。该模型包括以下五个步骤:步骤1. 定义流程;步骤2. 在一段时间内监测和测量变化;步骤3. 检查流程的变化;如果稳定(无显著变化),进入步骤4;否则,借助行动计划控制变化;步骤4. 制定内部阈值并将流程与之比较;步骤5.1. 将流程与内部标杆进行比较;以及步骤5.2. 将流程与外部标杆进行比较。

结果

通过使用从沙特阿拉伯达曼大学法赫德国王医院感染控制部门收集的2013年和2014年医疗保健相关感染(HAI)数据来说明这些步骤。

结论

监测变化是理解和了解一个流程的重要策略。在该示例中,2013年对医疗保健相关感染的变化进行了监测,并且需要一个更可预测的流程促使需要通过行动计划来控制变化。与历史平均值相比,2014年的数据出现了变化,并且变化有所减少,这表明行动计划是成功的。该模型存在局限性:例如,没有标杆就无法使用,标杆需要以相同的方式针对相似的患者群体进行计算,并且它仅关注DMAIC模型的“分析”部分。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验