Li Yueqi, Wang Hui, Wang Zixiao, Qiao Yanjun, Ulstrup Jens, Chen Hong-Yuan, Zhou Gang, Tao Nongjian
Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, Tempe, AZ 85287-5801.
State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China.
Proc Natl Acad Sci U S A. 2019 Feb 26;116(9):3407-3412. doi: 10.1073/pnas.1814825116. Epub 2019 Feb 8.
Electron transfer reactions can now be followed at the single-molecule level, but the connection between the microscopic and macroscopic data remains to be understood. By monitoring the conductance of a single molecule, we show that the individual electron transfer reaction events are stochastic and manifested as large conductance fluctuations. The fluctuation probability follows first-order kinetics with potential dependent rate constants described by the Butler-Volmer relation. Ensemble averaging of many individual reaction events leads to a deterministic dependence of the conductance on the external electrochemical potential that follows the Nernst equation. This study discloses a systematic transition from stochastic kinetics of individual reaction events to deterministic thermodynamics of ensemble averages and provides insights into electron transfer processes of small systems, consisting of a single molecule or a small number of molecules.
目前,电子转移反应已能在单分子水平上进行跟踪,但微观数据与宏观数据之间的联系仍有待理解。通过监测单个分子的电导,我们发现单个电子转移反应事件是随机的,并表现为大幅度的电导波动。波动概率遵循一级动力学,其速率常数与电势有关,由巴特勒-伏尔默关系描述。对许多单个反应事件进行系综平均,会导致电导与外部电化学势之间呈现出符合能斯特方程的确定性依赖关系。这项研究揭示了从单个反应事件的随机动力学到系综平均的确定性热力学的系统转变,并为包含单个分子或少量分子的小系统的电子转移过程提供了见解。