Ronellenfitsch Henrik, Katifori Eleni
Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
Phys Rev Lett. 2016 Sep 23;117(13):138301. doi: 10.1103/PhysRevLett.117.138301. Epub 2016 Sep 22.
Highly optimized complex transport networks serve crucial functions in many man-made and natural systems such as power grids and plant or animal vasculature. Often, the relevant optimization functional is nonconvex and characterized by many local extrema. In general, finding the global, or nearly global optimum is difficult. In biological systems, it is believed that such an optimal state is slowly achieved through natural selection. However, general coarse grained models for flow networks with local positive feedback rules for the vessel conductivity typically get trapped in low efficiency, local minima. In this work we show how the growth of the underlying tissue, coupled to the dynamical equations for network development, can drive the system to a dramatically improved optimal state. This general model provides a surprisingly simple explanation for the appearance of highly optimized transport networks in biology such as leaf and animal vasculature.
高度优化的复杂运输网络在许多人造和自然系统中发挥着关键作用,如电网以及植物或动物的脉管系统。通常,相关的优化函数是非凸的,并且具有许多局部极值。一般来说,找到全局或近似全局最优解是困难的。在生物系统中,人们认为这种最优状态是通过自然选择缓慢实现的。然而,具有局部正反馈规则的血管传导率的流动网络的一般粗粒度模型通常会陷入低效率的局部最小值。在这项工作中,我们展示了基础组织的生长与网络发育的动力学方程相结合,如何能够将系统驱动到一个显著改善的最优状态。这个通用模型为生物学中高度优化的运输网络(如叶片和动物脉管系统)的出现提供了一个惊人简单的解释。