Dai Ziwei, Lai Luhua
Center for Quantitative Biology, Peking University, Beijing 100871, China.
Mol Biosyst. 2014 Jun;10(6):1385-92. doi: 10.1039/c4mb00100a. Epub 2014 Apr 9.
Ordinary differential equations (ODEs) are widely used to model the dynamic properties of biological networks. Due to the complexity of biological networks and limited quantitative experimental data available, estimating kinetic parameters for these models remains challenging. We present a novel global optimization algorithm, differential simulated annealing (DSA), for estimating kinetic parameters for biological network models robustly and efficiently. DSA was tested on 95 models sizing from a few to several hundreds of parameters from the BioModels database and compared with other five widely used algorithms for parameter estimation, including both deterministic and stochastic optimization algorithms. Our study showed that DSA gave the highest success rate in the whole dataset and performed especially well for large models. Further analysis revealed that DSA outperformed the five algorithms compared in both accuracy and efficiency.
常微分方程(ODEs)被广泛用于对生物网络的动态特性进行建模。由于生物网络的复杂性以及可用的定量实验数据有限,估计这些模型的动力学参数仍然具有挑战性。我们提出了一种新颖的全局优化算法——差分模拟退火(DSA),用于稳健且高效地估计生物网络模型的动力学参数。DSA在来自BioModels数据库的95个模型上进行了测试,这些模型的参数数量从几个到几百个不等,并与其他五种广泛使用的参数估计算法进行了比较,包括确定性和随机优化算法。我们的研究表明,DSA在整个数据集中的成功率最高,并且对于大型模型表现尤其出色。进一步分析表明,DSA在准确性和效率方面均优于所比较的五种算法。