Faber Felix A, Lindmaa Alexander, von Lilienfeld O Anatole, Armiento Rickard
Institute of Physical Chemistry and National Center for Computational Design and Discovery of Novel Materials, Department of Chemistry, University of Basel, 4056 Basel, Switzerland.
Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden.
Phys Rev Lett. 2016 Sep 23;117(13):135502. doi: 10.1103/PhysRevLett.117.135502. Epub 2016 Sep 20.
Elpasolite is the predominant quaternary crystal structure (AlNaK_{2}F_{6} prototype) reported in the Inorganic Crystal Structure Database. We develop a machine learning model to calculate density functional theory quality formation energies of all ∼2×10^{6} pristine ABC_{2}D_{6} elpasolite crystals that can be made up from main-group elements (up to bismuth). Our model's accuracy can be improved systematically, reaching a mean absolute error of 0.1 eV/atom for a training set consisting of 10×10^{3} crystals. Important bonding trends are revealed: fluoride is best suited to fit the coordination of the D site, which lowers the formation energy whereas the opposite is found for carbon. The bonding contribution of the elements A and B is very small on average. Low formation energies result from A and B being late elements from group II, C being a late (group I) element, and D being fluoride. Out of 2×10^{6} crystals, 90 unique structures are predicted to be on the convex hull-among which is NFAl_{2}Ca_{6}, with a peculiar stoichiometry and a negative atomic oxidation state for Al.
钾冰晶石是无机晶体结构数据库中报道的主要的四元晶体结构(AlNaK₂F₆原型)。我们开发了一种机器学习模型,用于计算所有约2×10⁶种可由主族元素(直至铋)构成的原始ABC₂D₆钾冰晶石晶体的密度泛函理论质量形成能。我们模型的准确性可以系统地提高,对于一个由10×10³个晶体组成的训练集,平均绝对误差达到0.1 eV/原子。揭示了重要的键合趋势:氟化物最适合于D位的配位,这会降低形成能,而碳的情况则相反。元素A和B的键合贡献平均非常小。低形成能是由于A和B是第II族的晚期元素,C是晚期(第I族)元素,且D是氟化物。在2×10⁶个晶体中,预计有90种独特结构位于凸包上,其中包括NFAl₂Ca₆,其化学计量比奇特,且Al的原子氧化态为负。