Suppr超能文献

相似文献

1
Amygdala and Ventral Striatum Make Distinct Contributions to Reinforcement Learning.
Neuron. 2016 Oct 19;92(2):505-517. doi: 10.1016/j.neuron.2016.09.025. Epub 2016 Oct 6.
2
Effects of Ventral Striatum Lesions on Stimulus-Based versus Action-Based Reinforcement Learning.
J Neurosci. 2017 Jul 19;37(29):6902-6914. doi: 10.1523/JNEUROSCI.0631-17.2017. Epub 2017 Jun 16.
3
Motor System-Dependent Effects of Amygdala and Ventral Striatum Lesions on Explore-Exploit Behaviors.
J Neurosci. 2024 Jan 31;44(5):e1206232023. doi: 10.1523/JNEUROSCI.1206-23.2023.
4
Effects of Amygdala Lesions on Object-Based Versus Action-Based Learning in Macaques.
Cereb Cortex. 2021 Jan 1;31(1):529-546. doi: 10.1093/cercor/bhaa241.
5
The motivational role of the ventral striatum and amygdala in learning from gains and losses.
Behav Neurosci. 2023 Aug;137(4):268-280. doi: 10.1037/bne0000558. Epub 2023 May 4.
6
Ventral striatum's role in learning from gains and losses.
Proc Natl Acad Sci U S A. 2018 Dec 26;115(52):E12398-E12406. doi: 10.1073/pnas.1809833115. Epub 2018 Dec 13.
7
Ventral striatum lesions do not affect reinforcement learning with deterministic outcomes on slow time scales.
Behav Neurosci. 2017 Oct;131(5):385-91. doi: 10.1037/bne0000211. Epub 2017 Aug 14.
8
Selective bilateral amygdala lesions in rhesus monkeys fail to disrupt object reversal learning.
J Neurosci. 2007 Jan 31;27(5):1054-62. doi: 10.1523/JNEUROSCI.3616-06.2007.
9
Primate Orbitofrontal Cortex Codes Information Relevant for Managing Explore-Exploit Tradeoffs.
J Neurosci. 2020 Mar 18;40(12):2553-2561. doi: 10.1523/JNEUROSCI.2355-19.2020. Epub 2020 Feb 14.
10
Subcortical Substrates of Explore-Exploit Decisions in Primates.
Neuron. 2019 Aug 7;103(3):533-545.e5. doi: 10.1016/j.neuron.2019.05.017. Epub 2019 Jun 10.

引用本文的文献

1
Non-invasive Ultrasonic Neuromodulation of the Human Nucleus Accumbens Impacts Reward Sensitivity.
bioRxiv. 2025 Aug 6:2024.07.25.605068. doi: 10.1101/2024.07.25.605068.
6
Functional Heterogeneity within the Primate Ventral Striatum for Motivational Regulation.
J Neurosci. 2025 May 21;45(21):e2430242025. doi: 10.1523/JNEUROSCI.2430-24.2025.
7
An opponent striatal circuit for distributional reinforcement learning.
Nature. 2025 Mar;639(8055):717-726. doi: 10.1038/s41586-024-08488-5. Epub 2025 Feb 19.
8
Transcriptomic diversity of amygdalar subdivisions across humans and nonhuman primates.
bioRxiv. 2024 Oct 18:2024.10.18.618721. doi: 10.1101/2024.10.18.618721.
9
Computational processes of simultaneous learning of stochasticity and volatility in humans.
Nat Commun. 2024 Oct 21;15(1):9073. doi: 10.1038/s41467-024-53459-z.
10
Representation of Anticipated Rewards and Punishments in the Human Brain.
Annu Rev Psychol. 2025 Jan;76(1):197-226. doi: 10.1146/annurev-psych-022324-042614. Epub 2024 Dec 3.

本文引用的文献

1
Temporal Specificity of Reward Prediction Errors Signaled by Putative Dopamine Neurons in Rat VTA Depends on Ventral Striatum.
Neuron. 2016 Jul 6;91(1):182-93. doi: 10.1016/j.neuron.2016.05.015. Epub 2016 Jun 9.
3
Reward and choice encoding in terminals of midbrain dopamine neurons depends on striatal target.
Nat Neurosci. 2016 Jun;19(6):845-54. doi: 10.1038/nn.4287. Epub 2016 Apr 25.
4
Mini-review: Prediction errors, attention and associative learning.
Neurobiol Learn Mem. 2016 May;131:207-15. doi: 10.1016/j.nlm.2016.02.014. Epub 2016 Mar 3.
5
Dissociable Learning Processes Underlie Human Pain Conditioning.
Curr Biol. 2016 Jan 11;26(1):52-8. doi: 10.1016/j.cub.2015.10.066. Epub 2015 Dec 17.
6
Contrasting Roles for Orbitofrontal Cortex and Amygdala in Credit Assignment and Learning in Macaques.
Neuron. 2015 Sep 2;87(5):1106-18. doi: 10.1016/j.neuron.2015.08.018.
8
Abstract Context Representations in Primate Amygdala and Prefrontal Cortex.
Neuron. 2015 Aug 19;87(4):869-81. doi: 10.1016/j.neuron.2015.07.024.
9
The Role of Frontal Cortical and Medial-Temporal Lobe Brain Areas in Learning a Bayesian Prior Belief on Reversals.
J Neurosci. 2015 Aug 19;35(33):11751-60. doi: 10.1523/JNEUROSCI.1594-15.2015.
10
Neuronal Reward and Decision Signals: From Theories to Data.
Physiol Rev. 2015 Jul;95(3):853-951. doi: 10.1152/physrev.00023.2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验