Institute of Physiology and Pathophysiology, University of Heidelberg, Germany.
Department of Anesthesiology, University of Heidelberg, Germany.
Exp Neurol. 2016 Dec;286:93-106. doi: 10.1016/j.expneurol.2016.10.001. Epub 2016 Oct 5.
Episodes of cerebral hypoxia/ischemia increase the risk of dementia, which is associated with impaired learning and memory. Previous studies in rodent models of dementia indicated a favorable effect of the hypoxia-inducible factor (HIF) targets VEGF (vascular endothelial growth factor) and erythropoietin (Epo). In the present study we thus investigated whether activation of the entire adaptive HIF pathway in neurons by cell-specific deletion of the HIF suppressor prolyl-4-hydroxylase 2 (PHD2) improves cognitive abilities in young (3months) and old (18-28months) mice suffering from chronic brain hypoperfusion. Mice underwent permanent occlusion of the left common carotid artery, and cognitive function was assessed using the Morris water navigation task. Under conditions of both normal and decreased brain perfusion, neuronal PHD2 deficiency resulted in improved and faster spatial learning in young mice, which was preserved to some extent also in old animals. The loss of PHD2 in neurons resulted in enhanced hippocampal mRNA and protein levels of Epo and VEGF, but did not alter local microvascular density, dendritic spine morphology, or expression of synaptic plasticity-related genes in the hippocampus. Instead, better cognitive function in PHD2 deficient animals was accompanied by an increased number of neuronal precursor cells along the subgranular zone of the dentate gyrus. Overall, our current pre-clinical findings indicate an important role for the endogenous oxygen sensing machinery, encompassing PHDs, HIFs and HIF target genes, for proper cognitive function. Thus, pharmacological compounds affecting the PHD-HIF axis might well be suited to treat cognitive dysfunction and neurodegenerative processes.
脑缺氧/缺血发作会增加痴呆的风险,而痴呆与学习和记忆受损有关。先前在痴呆的啮齿动物模型中的研究表明,缺氧诱导因子 (HIF) 的靶标 VEGF(血管内皮生长因子)和促红细胞生成素 (Epo) 对其有有利影响。因此,在本研究中,我们通过特异性敲除神经元中的 HIF 抑制物脯氨酰-4-羟化酶 2 (PHD2) 来激活整个适应性 HIF 通路,从而研究其是否可以改善患有慢性大脑低灌注的年轻(3 个月)和老年(18-28 个月)小鼠的认知能力。小鼠接受了左侧颈总动脉永久性结扎,使用 Morris 水迷宫任务评估认知功能。在正常和脑灌注减少的情况下,神经元 PHD2 缺乏导致年轻小鼠的空间学习能力提高且更快,在老年动物中也在一定程度上得到了保留。神经元中 PHD2 的缺失导致 Epo 和 VEGF 的海马 mRNA 和蛋白水平升高,但不改变海马局部微血管密度、树突棘形态或突触可塑性相关基因的表达。相反,PHD2 缺乏动物的认知功能更好,伴随着齿状回颗粒下区神经元前体细胞数量的增加。总的来说,我们目前的临床前研究结果表明,内源性氧感应机制(包括 PHD、HIF 和 HIF 靶基因)对于适当的认知功能具有重要作用。因此,影响 PHD-HIF 轴的药物化合物可能非常适合治疗认知功能障碍和神经退行性过程。