Department of Medicine, Anatomy and Cell Biology and.
The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas; and.
J Am Soc Nephrol. 2020 Mar;31(3):501-516. doi: 10.1681/ASN.2019050523. Epub 2020 Jan 29.
Prolyl-4-hydroxylase domain-containing proteins 1-3 (PHD1 to PHD3) regulate the activity of the hypoxia-inducible factors (HIFs) HIF-1 and HIF-2, transcription factors that are key regulators of hypoxic vascular responses. We previously reported that deficiency of endothelial HIF-2 exacerbated renal ischemia-reperfusion injury, whereas inactivation of endothelial PHD2, the main oxygen sensor, provided renoprotection. Nevertheless, the molecular mechanisms by which endothelial PHD2 dictates AKI outcomes remain undefined.
To investigate the function of the endothelial PHD2/HIF axis in ischemic AKI, we examined the effects of endothelial-specific ablation of PHD2 in a mouse model of renal ischemia-reperfusion injury. We also interrogated the contribution of each HIF isoform by concurrent endothelial deletion of both PHD2 and HIF-1 or both PHD2 and HIF-2.
Endothelial deletion of preserved kidney function and limited transition to CKD. Mechanistically, we found that endothelial ablation protected against renal ischemia-reperfusion injury by suppressing the expression of proinflammatory genes and recruitment of inflammatory cells in a manner that was dependent on HIF-1 but not HIF-2. Persistence of renoprotective responses after acute inducible endothelial-specific loss of in adult mice ruled out a requirement for PHD2 signaling in hematopoietic cells. Although inhibition was not sufficient to induce detectable HIF activity in the kidney endothelium, experiments implicated a humoral factor in the anti-inflammatory effects generated by endothelial PHD2/HIF-1 signaling.
Our findings suggest that activation of endothelial HIF-1 signaling through PHD2 inhibition may offer a novel therapeutic approach against ischemic AKI.
脯氨酰-4-羟化酶结构域蛋白 1-3(PHD1 至 PHD3)调节缺氧诱导因子(HIF)HIF-1 和 HIF-2 的活性,HIF-1 和 HIF-2 是缺氧血管反应的关键调节因子。我们之前报道过,内皮细胞 HIF-2 的缺乏会加剧肾缺血再灌注损伤,而内皮细胞 PHD2(主要的氧传感器)的失活则提供了肾脏保护。然而,内皮细胞 PHD2 决定 AKI 结果的分子机制尚不清楚。
为了研究内皮细胞 PHD2/HIF 轴在缺血性 AKI 中的功能,我们在肾缺血再灌注损伤的小鼠模型中研究了内皮细胞特异性 PHD2 缺失的影响。我们还通过同时缺失内皮细胞中的 PHD2 和 HIF-1 或 PHD2 和 HIF-2,研究了每个 HIF 同工型的贡献。
内皮细胞 PHD2 的缺失维持了肾功能,限制了向 CKD 的转变。从机制上讲,我们发现内皮细胞 缺失通过抑制促炎基因的表达和炎症细胞的募集来防止肾缺血再灌注损伤,这种作用依赖于 HIF-1,但不依赖于 HIF-2。在成年小鼠中,急性诱导性内皮特异性缺失 后,保护性反应持续存在,排除了 PHD2 信号在造血细胞中对肾脏的保护作用。虽然 抑制不足以诱导肾脏内皮细胞中可检测到的 HIF 活性,但 实验表明内皮 PHD2/HIF-1 信号转导产生的抗炎作用涉及一种体液因子。
我们的研究结果表明,通过抑制 PHD2 激活内皮细胞 HIF-1 信号可能为缺血性 AKI 提供一种新的治疗方法。