Chang Hang, Zhou Yin, Borowsky Alexander, Barner Kenneth, Spellman Paul, Parvin Bahram
Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
Center for Comparative Medicine, UC Davis, Davis, CA, USA.
Int J Comput Vis. 2015 May;113(1):3-18. doi: 10.1007/s11263-014-0790-9. Epub 2014 Dec 23.
Image-based classification of histology sections, in terms of distinct components (e.g., tumor, stroma, normal), provides a series of indices for histology composition (e.g., the percentage of each distinct components in histology sections), and enables the study of nuclear properties within each component. Furthermore, the study of these indices, constructed from each whole slide image in a large cohort, has the potential to provide predictive models of clinical outcome. For example, correlations can be established between the constructed indices and the patients' survival information at cohort level, which is a fundamental step towards personalized medicine. However, performance of the existing techniques is hindered as a result of large technical variations (e.g., variations of color/textures in tissue images due to non-standard experimental protocols) and biological heterogeneities (e.g., cell type, cell state) that are always present in a large cohort. We propose a system that automatically learns a series of dictionary elements for representing the underlying spatial distribution using stacked predictive sparse decomposition. The learned representation is then fed into the spatial pyramid matching framework with a linear support vector machine classifier. The system has been evaluated for classification of distinct histological components for two cohorts of tumor types. Throughput has been increased by using of graphical processing unit (GPU), and evaluation indicates a superior performance results, compared with previous research.
基于图像的组织学切片分类,依据不同成分(如肿瘤、基质、正常组织),可提供一系列组织学组成指标(如各不同成分在组织学切片中的百分比),并能对每个成分内的细胞核特性进行研究。此外,对从大量队列中的每个全切片图像构建的这些指标进行研究,有可能提供临床结果的预测模型。例如,可在队列层面建立构建指标与患者生存信息之间的相关性,这是迈向个性化医疗的重要一步。然而,由于存在较大的技术差异(如由于非标准实验方案导致组织图像中的颜色/纹理变化)以及生物异质性(如细胞类型、细胞状态),现有技术的性能受到阻碍,而这些在大量队列中总是存在的。我们提出一种系统,该系统使用堆叠预测稀疏分解自动学习一系列用于表示潜在空间分布的字典元素。然后将学习到的表示输入到带有线性支持向量机分类器的空间金字塔匹配框架中。该系统已针对两类肿瘤类型的不同组织学成分分类进行了评估。通过使用图形处理单元(GPU)提高了吞吐量,与先前研究相比,评估表明该系统具有卓越的性能结果。