Suppr超能文献

细胞形态测量背景的综合分析揭示了低级别胶质瘤中与临床相关的特征。

Integrative Analysis of Cellular Morphometric Context Reveals Clinically Relevant Signatures in Lower Grade Glioma.

作者信息

Han Ju, Wang Yunfu, Cai Weidong, Borowsky Alexander, Parvin Bahram, Chang Hang

机构信息

Lawrence Berkeley National Laboratory, Berkeley, California, U.S.A; Department of Electrical and Biomedical Engineering, University of Nevada, Reno, U.S.A.

Lawrence Berkeley National Laboratory, Berkeley, California, U.S.A; Department of Neurology, Taihe Hospital, Hubei University of Medicine, Hubei, China.

出版信息

Med Image Comput Comput Assist Interv. 2016 Oct;9900:72-80. doi: 10.1007/978-3-319-46720-7_9. Epub 2016 Oct 2.

Abstract

Integrative analysis based on quantitative representation of whole slide images (WSIs) in a large histology cohort may provide predictive models of clinical outcome. On one hand, the efficiency and effectiveness of such representation is hindered as a result of large technical variations (e.g., fixation, staining) and biological heterogeneities (e.g., cell type, cell state) that are always present in a large cohort. On the other hand, perceptual interpretation/validation of important multivariate phenotypic signatures are often difficult due to the loss of visual information during feature transformation in hyperspace. To address these issues, we propose a novel approach for integrative analysis based on cellular morphometric context, which is a robust representation of WSI, with the emphasis on tumor architecture and tumor heterogeneity, built upon cellular level morphometric features within the spatial pyramid matching (SPM) framework. The proposed approach is applied to The Cancer Genome Atlas (TCGA) lower grade glioma (LGG) cohort, where experimental results (i) reveal several clinically relevant cellular morphometric types, which enables both perceptual interpretation/validation and further investigation through gene set enrichment analysis; and (ii) indicate the significantly increased survival rates in one of the cellular morphometric context subtypes derived from the cellular morphometric context.

摘要

基于大组织学队列中全切片图像(WSIs)定量表示的综合分析可能会提供临床结果的预测模型。一方面,由于大队列中总是存在的较大技术差异(如固定、染色)和生物学异质性(如细胞类型、细胞状态),这种表示的效率和有效性受到阻碍。另一方面,由于在超空间特征转换过程中视觉信息的丢失,重要多变量表型特征的感知解释/验证通常很困难。为了解决这些问题,我们提出了一种基于细胞形态计量学背景的综合分析新方法,这是一种对WSIs的稳健表示,强调肿瘤结构和肿瘤异质性,基于空间金字塔匹配(SPM)框架内的细胞水平形态计量学特征构建。所提出的方法应用于癌症基因组图谱(TCGA)低级别胶质瘤(LGG)队列,实验结果(i)揭示了几种临床相关的细胞形态计量学类型,这既能够进行感知解释/验证,又能够通过基因集富集分析进行进一步研究;(ii)表明从细胞形态计量学背景派生的一种细胞形态计量学背景亚型的生存率显著提高。

相似文献

1
Integrative Analysis of Cellular Morphometric Context Reveals Clinically Relevant Signatures in Lower Grade Glioma.
Med Image Comput Comput Assist Interv. 2016 Oct;9900:72-80. doi: 10.1007/978-3-319-46720-7_9. Epub 2016 Oct 2.
2
Classification of Tumor Histology via Morphometric Context.
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2013 Jun 23;2013. doi: 10.1109/CVPR.2013.286.
3
Stacked Predictive Sparse Coding for Classification of Distinct Regions of Tumor Histopathology.
Proc IEEE Int Conf Comput Vis. 2013:169-176. doi: 10.1109/ICCV.2013.28.
5
Classification of Histology Sections via Multispectral Convolutional Sparse Coding.
Conf Comput Vis Pattern Recognit Workshops. 2014 Jun;2014:3081-3088. doi: 10.1109/CVPR.2014.394.
6
Biomarkers of Tumor Heterogeneity in Glioblastoma Multiforme Cohort of TCGA.
Cancers (Basel). 2023 Apr 20;15(8):2387. doi: 10.3390/cancers15082387.
7
DNA methylation signatures for 2016 WHO classification subtypes of diffuse gliomas.
Clin Epigenetics. 2017 Apr 4;9:32. doi: 10.1186/s13148-017-0331-9. eCollection 2017.
8
Stacked Predictive Sparse Decomposition for Classification of Histology Sections.
Int J Comput Vis. 2015 May;113(1):3-18. doi: 10.1007/s11263-014-0790-9. Epub 2014 Dec 23.
9
SHOX2 is a Potent Independent Biomarker to Predict Survival of WHO Grade II-III Diffuse Gliomas.
EBioMedicine. 2016 Nov;13:80-89. doi: 10.1016/j.ebiom.2016.10.040. Epub 2016 Oct 28.

引用本文的文献

1
Quantitative Nuclear Histomorphometry Predicts Molecular Subtype and Clinical Outcome in Medulloblastomas: Preliminary Findings.
J Pathol Inform. 2022 Feb 17;13:100090. doi: 10.1016/j.jpi.2022.100090. eCollection 2022.
2
Unsupervised Transfer Learning via Multi-Scale Convolutional Sparse Coding for Biomedical Applications.
IEEE Trans Pattern Anal Mach Intell. 2018 May;40(5):1182-1194. doi: 10.1109/TPAMI.2017.2656884. Epub 2017 Jan 23.

本文引用的文献

1
2
NUCLEI SEGMENTATION VIA SPARSITY CONSTRAINED CONVOLUTIONAL REGRESSION.
Proc IEEE Int Symp Biomed Imaging. 2015 Apr;2015:1284-1287. doi: 10.1109/ISBI.2015.7164109. Epub 2015 Jul 23.
3
Stacked Predictive Sparse Decomposition for Classification of Histology Sections.
Int J Comput Vis. 2015 May;113(1):3-18. doi: 10.1007/s11263-014-0790-9. Epub 2014 Dec 23.
4
Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas.
N Engl J Med. 2015 Jun 25;372(26):2481-98. doi: 10.1056/NEJMoa1402121. Epub 2015 Jun 10.
5
Classification of Histology Sections via Multispectral Convolutional Sparse Coding.
Conf Comput Vis Pattern Recognit Workshops. 2014 Jun;2014:3081-3088. doi: 10.1109/CVPR.2014.394.
6
Cell words: modelling the visual appearance of cells in histopathology images.
Comput Med Imaging Graph. 2015 Jun;42:16-24. doi: 10.1016/j.compmedimag.2014.11.008. Epub 2014 Nov 20.
7
Classification of Tumor Histology via Morphometric Context.
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2013 Jun 23;2013. doi: 10.1109/CVPR.2013.286.
8
Invariant delineation of nuclear architecture in glioblastoma multiforme for clinical and molecular association.
IEEE Trans Med Imaging. 2013 Apr;32(4):670-82. doi: 10.1109/TMI.2012.2231420. Epub 2012 Dec 4.
9
Time-efficient sparse analysis of histopathological whole slide images.
Comput Med Imaging Graph. 2011 Oct-Dec;35(7-8):579-91. doi: 10.1016/j.compmedimag.2010.11.009. Epub 2010 Dec 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验