Han Ju, Wang Yunfu, Cai Weidong, Borowsky Alexander, Parvin Bahram, Chang Hang
Lawrence Berkeley National Laboratory, Berkeley, California, U.S.A; Department of Electrical and Biomedical Engineering, University of Nevada, Reno, U.S.A.
Lawrence Berkeley National Laboratory, Berkeley, California, U.S.A; Department of Neurology, Taihe Hospital, Hubei University of Medicine, Hubei, China.
Med Image Comput Comput Assist Interv. 2016 Oct;9900:72-80. doi: 10.1007/978-3-319-46720-7_9. Epub 2016 Oct 2.
Integrative analysis based on quantitative representation of whole slide images (WSIs) in a large histology cohort may provide predictive models of clinical outcome. On one hand, the efficiency and effectiveness of such representation is hindered as a result of large technical variations (e.g., fixation, staining) and biological heterogeneities (e.g., cell type, cell state) that are always present in a large cohort. On the other hand, perceptual interpretation/validation of important multivariate phenotypic signatures are often difficult due to the loss of visual information during feature transformation in hyperspace. To address these issues, we propose a novel approach for integrative analysis based on cellular morphometric context, which is a robust representation of WSI, with the emphasis on tumor architecture and tumor heterogeneity, built upon cellular level morphometric features within the spatial pyramid matching (SPM) framework. The proposed approach is applied to The Cancer Genome Atlas (TCGA) lower grade glioma (LGG) cohort, where experimental results (i) reveal several clinically relevant cellular morphometric types, which enables both perceptual interpretation/validation and further investigation through gene set enrichment analysis; and (ii) indicate the significantly increased survival rates in one of the cellular morphometric context subtypes derived from the cellular morphometric context.
基于大组织学队列中全切片图像(WSIs)定量表示的综合分析可能会提供临床结果的预测模型。一方面,由于大队列中总是存在的较大技术差异(如固定、染色)和生物学异质性(如细胞类型、细胞状态),这种表示的效率和有效性受到阻碍。另一方面,由于在超空间特征转换过程中视觉信息的丢失,重要多变量表型特征的感知解释/验证通常很困难。为了解决这些问题,我们提出了一种基于细胞形态计量学背景的综合分析新方法,这是一种对WSIs的稳健表示,强调肿瘤结构和肿瘤异质性,基于空间金字塔匹配(SPM)框架内的细胞水平形态计量学特征构建。所提出的方法应用于癌症基因组图谱(TCGA)低级别胶质瘤(LGG)队列,实验结果(i)揭示了几种临床相关的细胞形态计量学类型,这既能够进行感知解释/验证,又能够通过基因集富集分析进行进一步研究;(ii)表明从细胞形态计量学背景派生的一种细胞形态计量学背景亚型的生存率显著提高。