Khullar Vikas, Kaur Prabhjot, Gargrish Shubham, Mishra Anand Muni, Singh Prabhishek, Diwakar Manoj, Bijalwan Anchit, Gupta Indrajeet
Chitkara University Institute of Engineering Technology, Chitkara University, Rajpura, Punjab, India.
Chandigarh Engineering College, Chandigarh Group of Colleges, Jhanjeri, Mohali, India.
Sci Rep. 2025 Jan 21;15(1):2605. doi: 10.1038/s41598-024-82402-x.
One of the most fatal diseases that affect people is skin cancer. Because nevus and melanoma lesions are so similar and there is a high likelihood of false negative diagnoses challenges in hospitals. The aim of this paper is to propose and develop a technique to classify type of skin cancer with high accuracy using minimal resources and lightweight federated transfer learning models. Here minimal resource based pre-trained deep learning models including EfficientNetV2S, EfficientNetB3, ResNet50, and NasNetMobile have been used to apply transfer learning on data of shape[Formula: see text]. To compare with applied minimal resource transfer learning, same methodology has been applied using best identified model i.e. EfficientNetV2S for images of shape[Formula: see text]. The identified minimal and lightweight resource based EfficientNetV2S with images of shape [Formula: see text] have been applied for federated learning ecosystem. Both, identically and non-identically distributed datasets of shape [Formula: see text] have been applied and analyzed through federated learning implementations. The results have been analyzed to show the impact of low-pixel images with non-identical distributions over clients using parameters such as accuracy, precision, recall and categorical losses. The classification of skin cancer shows an accuracy of IID 89.83% and Non-IID 90.64%.
影响人类的最致命疾病之一是皮肤癌。由于痣和黑色素瘤病变非常相似,医院在假阴性诊断方面存在很大挑战。本文的目的是提出并开发一种技术,使用最少的资源和轻量级联邦迁移学习模型来高精度地对皮肤癌类型进行分类。这里使用了基于最少资源的预训练深度学习模型,包括EfficientNetV2S、EfficientNetB3、ResNet50和NasNetMobile,对形状[公式:见正文]的数据应用迁移学习。为了与应用的最少资源迁移学习进行比较,对形状[公式:见正文]的图像使用最佳识别模型即EfficientNetV2S应用相同的方法。已将基于最少和轻量级资源的EfficientNetV2S与形状[公式:见正文]的图像应用于联邦学习生态系统。通过联邦学习实现对形状[公式:见正文]的相同和不同分布数据集进行了应用和分析。使用准确率、精确率、召回率和分类损失等参数分析结果,以显示具有不同分布的低像素图像对客户端的影响。皮肤癌分类的独立同分布准确率为89.83%,非独立同分布准确率为90.64%。