Suppr超能文献

磷酸化调节细胞内CRY1蛋白比例决定昼夜节律周期。

Phosphorylation Regulating the Ratio of Intracellular CRY1 Protein Determines the Circadian Period.

作者信息

Liu Na, Zhang Eric Erquan

机构信息

College of Life Sciences, Beijing Normal University, Beijing, China; National Institute of Biological Sciences, Beijing, China.

National Institute of Biological Sciences , Beijing , China.

出版信息

Front Neurol. 2016 Sep 23;7:159. doi: 10.3389/fneur.2016.00159. eCollection 2016.

Abstract

The core circadian oscillator in mammals is composed of transcription/translation feedback loop, in which cryptochrome (CRY) proteins play critical roles as repressors of their own gene expression. Although post-translational modifications, such as phosphorylation of CRY1, are crucial for circadian rhythm, little is known about how phosphorylated CRY1 contributes to the molecular clockwork. To address this, we created a series of CRY1 mutants with single amino acid substitutions at potential phosphorylation sites and performed a cell-based, phenotype-rescuing screen to identify mutants with aberrant rhythmicity in CRY-deficient cells. We report 10 mutants with an abnormal circadian period length, including long period (S280D and S588D), short period (S158D, S247D, T249D, Y266D, Y273D, and Y432D), and arrhythmicity (S71D and S404D). When expressing mutated CRY1 in HEK293 cells, we show that most of the mutants (S71D, S247D, T249D, Y266D, Y273D, and Y432D) exhibited reduction in repression activity compared with wild-type (WT) CRY1, whereas other mutants had no obvious change. Correspondingly, these mutants also showed differences in protein stability and cellular localization. We show that most of mutants are more stable than WT, except S158D, T249D, and S280D. Although the characteristics of the 10 mutants are various, they all impair the ratio balance of intracellular CRY1 protein. Thus, we conclude that the mutations caused distinct phenotypes most likely through the ratio of functional CRY1 protein in cells.

摘要

哺乳动物的核心昼夜节律振荡器由转录/翻译反馈回路组成,其中隐花色素(CRY)蛋白作为自身基因表达的抑制因子发挥关键作用。尽管翻译后修饰,如CRY1的磷酸化,对昼夜节律至关重要,但关于磷酸化的CRY1如何促进分子生物钟机制却知之甚少。为了解决这个问题,我们创建了一系列在潜在磷酸化位点具有单氨基酸取代的CRY1突变体,并进行了基于细胞的表型拯救筛选,以鉴定CRY缺陷细胞中具有异常节律性的突变体。我们报告了10个具有异常昼夜周期长度的突变体,包括长周期(S280D和S588D)、短周期(S158D、S247D、T249D、Y266D、Y273D和Y432D)以及无节律(S71D和S404D)。当在HEK293细胞中表达突变的CRY1时,我们发现与野生型(WT)CRY1相比,大多数突变体(S71D、S247D、T249D、Y266D、Y273D和Y432D)的抑制活性降低,而其他突变体没有明显变化。相应地,这些突变体在蛋白质稳定性和细胞定位方面也表现出差异。我们发现,除了S158D、T249D和S280D外,大多数突变体比WT更稳定。尽管这10个突变体的特征各不相同,但它们都破坏了细胞内CRY1蛋白的比例平衡。因此,我们得出结论,这些突变最有可能通过细胞中功能性CRY1蛋白的比例导致不同的表型

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3958/5033960/03e9d81463b1/fneur-07-00159-g001.jpg

相似文献

1
Phosphorylation Regulating the Ratio of Intracellular CRY1 Protein Determines the Circadian Period.
Front Neurol. 2016 Sep 23;7:159. doi: 10.3389/fneur.2016.00159. eCollection 2016.
2
Knockout-Rescue Embryonic Stem Cell-Derived Mouse Reveals Circadian-Period Control by Quality and Quantity of CRY1.
Mol Cell. 2017 Jan 5;65(1):176-190. doi: 10.1016/j.molcel.2016.11.022. Epub 2016 Dec 22.
3
The ratio of intracellular CRY proteins determines the clock period length.
Biochem Biophys Res Commun. 2016 Apr 8;472(3):531-8. doi: 10.1016/j.bbrc.2016.03.010. Epub 2016 Mar 7.
4
Cycling of CRYPTOCHROME proteins is not necessary for circadian-clock function in mammalian fibroblasts.
Curr Biol. 2007 Jul 3;17(13):1091-100. doi: 10.1016/j.cub.2007.05.048. Epub 2007 Jun 21.
5
USP7 and TDP-43: Pleiotropic Regulation of Cryptochrome Protein Stability Paces the Oscillation of the Mammalian Circadian Clock.
PLoS One. 2016 Apr 28;11(4):e0154263. doi: 10.1371/journal.pone.0154263. eCollection 2016.
6
Unusual circadian locomotor activity and pathophysiology in mutant CRY1 transgenic mice.
Neurosci Lett. 2009 Feb 27;451(3):246-51. doi: 10.1016/j.neulet.2009.01.014. Epub 2009 Jan 13.
7
Vaccinia-related kinase 3 (VRK3) sets the circadian period and amplitude by affecting the subcellular localization of clock proteins in mammalian cells.
Biochem Biophys Res Commun. 2017 May 27;487(2):320-326. doi: 10.1016/j.bbrc.2017.04.057. Epub 2017 Apr 13.
8
Identification and validation of cryptochrome inhibitors that modulate the molecular circadian clock.
ACS Chem Biol. 2014 Mar 21;9(3):703-10. doi: 10.1021/cb400752k. Epub 2014 Jan 3.
9
Formation of a repressive complex in the mammalian circadian clock is mediated by the secondary pocket of CRY1.
Proc Natl Acad Sci U S A. 2017 Feb 14;114(7):1560-1565. doi: 10.1073/pnas.1615310114. Epub 2017 Jan 31.
10
DNA damage shifts circadian clock time via Hausp-dependent Cry1 stabilization.
Elife. 2015 Mar 10;4:e04883. doi: 10.7554/eLife.04883.

引用本文的文献

1
2
Clock-Dependent Phosphorylation of CikA Regulates Its Activity.
J Biol Rhythms. 2025 Jun 19:7487304251338156. doi: 10.1177/07487304251338156.
3
Circadian period is compensated for repressor protein turnover rates in single cells.
Proc Natl Acad Sci U S A. 2024 Aug 20;121(34):e2404738121. doi: 10.1073/pnas.2404738121. Epub 2024 Aug 14.
5
Clocking cancer: the circadian clock as a target in cancer therapy.
Oncogene. 2021 May;40(18):3187-3200. doi: 10.1038/s41388-021-01778-6. Epub 2021 Apr 12.
6
Identification of PCBP1 as a Novel Modulator of Mammalian Circadian Clock.
Front Genet. 2021 Mar 26;12:656571. doi: 10.3389/fgene.2021.656571. eCollection 2021.
7
Phosphorylation and Circadian Molecular Timing.
Front Physiol. 2020 Nov 26;11:612510. doi: 10.3389/fphys.2020.612510. eCollection 2020.
8
The tail of cryptochromes: an intrinsically disordered cog within the mammalian circadian clock.
Cell Commun Signal. 2020 Nov 16;18(1):182. doi: 10.1186/s12964-020-00665-z.
9
The human CRY1 tail controls circadian timing by regulating its association with CLOCK:BMAL1.
Proc Natl Acad Sci U S A. 2020 Nov 10;117(45):27971-27979. doi: 10.1073/pnas.1920653117. Epub 2020 Oct 26.
10
New insights into non-transcriptional regulation of mammalian core clock proteins.
J Cell Sci. 2020 Sep 15;133(18):jcs241174. doi: 10.1242/jcs.241174.

本文引用的文献

1
The ratio of intracellular CRY proteins determines the clock period length.
Biochem Biophys Res Commun. 2016 Apr 8;472(3):531-8. doi: 10.1016/j.bbrc.2016.03.010. Epub 2016 Mar 7.
2
KPNB1 mediates PER/CRY nuclear translocation and circadian clock function.
Elife. 2015 Aug 29;4:e08647. doi: 10.7554/eLife.08647.
3
IBS: an illustrator for the presentation and visualization of biological sequences.
Bioinformatics. 2015 Oct 15;31(20):3359-61. doi: 10.1093/bioinformatics/btv362. Epub 2015 Jun 10.
4
Cryptochrome 1 regulates the circadian clock through dynamic interactions with the BMAL1 C terminus.
Nat Struct Mol Biol. 2015 Jun;22(6):476-484. doi: 10.1038/nsmb.3018. Epub 2015 May 11.
5
PhosphoSitePlus, 2014: mutations, PTMs and recalibrations.
Nucleic Acids Res. 2015 Jan;43(Database issue):D512-20. doi: 10.1093/nar/gku1267. Epub 2014 Dec 16.
7
Phosphorylation of the cryptochrome 1 C-terminal tail regulates circadian period length.
J Biol Chem. 2013 Dec 6;288(49):35277-86. doi: 10.1074/jbc.M113.509604. Epub 2013 Oct 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验