Suppr超能文献

竞争的 E3 泛素连接酶通过降解核和细胞质中的 CRY 来控制生物钟的周期性。

Competing E3 ubiquitin ligases govern circadian periodicity by degradation of CRY in nucleus and cytoplasm.

机构信息

Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.

出版信息

Cell. 2013 Feb 28;152(5):1091-105. doi: 10.1016/j.cell.2013.01.055.

Abstract

Period determination in the mammalian circadian clock involves the turnover rate of the repressors CRY and PER. We show that CRY ubiquitination engages two competing E3 ligase complexes that either lengthen or shorten circadian period in mice. Cloning of a short-period circadian mutant, Past-time, revealed a glycine to glutamate missense mutation in Fbxl21, an F-box protein gene that is a paralog of Fbxl3 that targets the CRY proteins for degradation. While loss of function of FBXL3 leads to period lengthening, mutation of Fbxl21 causes period shortening. FBXL21 forms an SCF E3 ligase complex that slowly degrades CRY in the cytoplasm but antagonizes the stronger E3 ligase activity of FBXL3 in the nucleus. FBXL21 plays a dual role: protecting CRY from FBXL3 degradation in the nucleus and promoting CRY degradation within the cytoplasm. Thus, the balance and cellular compartmentalization of competing E3 ligases for CRY determine circadian period of the clock in mammals.

摘要

哺乳动物生物钟的周期确定涉及到抑制因子 CRY 和 PER 的周转率。我们表明,CRY 的泛素化涉及到两个竞争的 E3 连接酶复合物,它们可以延长或缩短小鼠的生物钟周期。短周期生物钟突变体 Past-time 的克隆揭示了 Fbxl21 中的一个甘氨酸到谷氨酸的错义突变,Fbxl21 是 F-box 蛋白基因,是靶向 CRY 蛋白降解的 Fbxl3 的同源物。虽然 FBXL3 的功能丧失会导致周期延长,但 Fbxl21 的突变会导致周期缩短。FBXL21 形成一个 SCF E3 连接酶复合物,在细胞质中缓慢降解 CRY,但在核内拮抗 FBXL3 的更强的 E3 连接酶活性。FBXL21 发挥双重作用:保护 CRY 免受核内 FBXL3 的降解,并促进细胞质内的 CRY 降解。因此,竞争 E3 连接酶对 CRY 的平衡和细胞区室化决定了哺乳动物生物钟的周期。

相似文献

3
USP7 and TDP-43: Pleiotropic Regulation of Cryptochrome Protein Stability Paces the Oscillation of the Mammalian Circadian Clock.
PLoS One. 2016 Apr 28;11(4):e0154263. doi: 10.1371/journal.pone.0154263. eCollection 2016.
4
Implication of the F-Box Protein FBXL21 in circadian pacemaker function in mammals.
PLoS One. 2008;3(10):e3530. doi: 10.1371/journal.pone.0003530. Epub 2008 Oct 27.
5
The circadian E3 ligase complex SCF targets TLK2.
Sci Rep. 2019 Jan 17;9(1):198. doi: 10.1038/s41598-018-36618-3.
7
Genetics and neurobiology of circadian clocks in mammals.
Cold Spring Harb Symp Quant Biol. 2007;72:251-259. doi: 10.1101/sqb.2007.72.052.
8
Circadian mutant Overtime reveals F-box protein FBXL3 regulation of cryptochrome and period gene expression.
Cell. 2007 Jun 1;129(5):1011-23. doi: 10.1016/j.cell.2007.04.030. Epub 2007 Apr 26.
9
Delayed Cryptochrome Degradation Asymmetrically Alters the Daily Rhythm in Suprachiasmatic Clock Neuron Excitability.
J Neurosci. 2017 Aug 16;37(33):7824-7836. doi: 10.1523/JNEUROSCI.0691-17.2017. Epub 2017 Jul 11.
10
SCF(FBXL3) ubiquitin ligase targets cryptochromes at their cofactor pocket.
Nature. 2013 Apr 4;496(7443):64-8. doi: 10.1038/nature11964. Epub 2013 Mar 17.

引用本文的文献

1
The ontogeny of circadian clock gene expression during mouse fetal development.
Biochem Biophys Rep. 2025 Aug 27;44:102216. doi: 10.1016/j.bbrep.2025.102216. eCollection 2025 Dec.
2
3
The interplay between circadian rhythms and aging: molecular mechanisms and therapeutic strategies.
Biogerontology. 2025 Aug 27;26(5):173. doi: 10.1007/s10522-025-10301-3.
4
FBXL3 serves as a suppressor of regenerative myogenesis.
Front Immunol. 2025 Jul 18;16:1575712. doi: 10.3389/fimmu.2025.1575712. eCollection 2025.
5
6
BMAL1 in Ischemic Heart Disease: A Narrative Review from Molecular Clock to Myocardial Pathology.
Int J Mol Sci. 2025 May 12;26(10):4626. doi: 10.3390/ijms26104626.
7
Rhythms in Remodeling: Posttranslational Regulation of Bone by the Circadian Clock.
Biomedicines. 2025 Mar 13;13(3):705. doi: 10.3390/biomedicines13030705.
9
Epigenetic Mechanisms in the Transcriptional Regulation of Circadian Rhythm in Mammals.
Biology (Basel). 2025 Jan 8;14(1):42. doi: 10.3390/biology14010042.
10
Development of compounds for targeted degradation of mammalian cryptochrome proteins.
Philos Trans R Soc Lond B Biol Sci. 2025 Jan 23;380(1918):20230342. doi: 10.1098/rstb.2023.0342.

本文引用的文献

1
Speed control: cogs and gears that drive the circadian clock.
Trends Neurosci. 2012 Sep;35(9):574-85. doi: 10.1016/j.tins.2012.05.007. Epub 2012 Jun 28.
2
Identification of a novel cryptochrome differentiating domain required for feedback repression in circadian clock function.
J Biol Chem. 2012 Jul 27;287(31):25917-26. doi: 10.1074/jbc.M112.368001. Epub 2012 Jun 12.
3
USP2a protein deubiquitinates and stabilizes the circadian protein CRY1 in response to inflammatory signals.
J Biol Chem. 2012 Jul 20;287(30):25280-91. doi: 10.1074/jbc.M112.340786. Epub 2012 Jun 5.
4
Central and peripheral circadian clocks in mammals.
Annu Rev Neurosci. 2012;35:445-62. doi: 10.1146/annurev-neuro-060909-153128. Epub 2012 Apr 5.
5
Regulation of circadian behaviour and metabolism by REV-ERB-α and REV-ERB-β.
Nature. 2012 Mar 29;485(7396):123-7. doi: 10.1038/nature11048.
6
Genetics of circadian rhythms in Mammalian model organisms.
Adv Genet. 2011;74:175-230. doi: 10.1016/B978-0-12-387690-4.00006-4.
7
Cubism and the cell cycle: the many faces of the APC/C.
Nat Rev Mol Cell Biol. 2011 Jun 2;12(7):427-38. doi: 10.1038/nrm3132.
9
Delay in feedback repression by cryptochrome 1 is required for circadian clock function.
Cell. 2011 Jan 21;144(2):268-81. doi: 10.1016/j.cell.2010.12.019.
10
Circadian integration of metabolism and energetics.
Science. 2010 Dec 3;330(6009):1349-54. doi: 10.1126/science.1195027.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验