Suppr超能文献

序列在改变RNA假结展开途径中的作用:一项引导分子动力学研究。

The role of sequence in altering the unfolding pathway of an RNA pseudoknot: a steered molecular dynamics study.

作者信息

Gupta Asmita, Bansal Manju

机构信息

Molecular Biophysics Unit, Indian Institute of Science, Bangalore-560012, India.

出版信息

Phys Chem Chem Phys. 2016 Oct 19;18(41):28767-28780. doi: 10.1039/c6cp04617g.

Abstract

Mechanical unfolding studies on Ribonucleic Acid (RNA) structures are a subject of tremendous interest as they shed light on the principles of higher order assembly of these structures. Pseudoknotting is one of the most elementary ways in which this higher order assembly is achieved as discrete secondary structural units in RNA are brought in close proximity to form a tertiary structure. Using steered molecular dynamics (SMD) simulations, we have studied the unfolding of five RNA pseudoknot structures that differ from each other either by base substitutions in helices or loops. Our SMD simulations reveal the manner in which a biologically functional RNA pseudoknot unfolds and the effect of changes in the primary structure on this unfolding pathway, providing necessary insights into the driving forces behind the functioning of these structures. We observed that an A → C mutation in the loop sequence makes the pseudoknot far more resistant against force induced disruption relative to its wild type structure. In contrast to this, a base-pair substitution GC → AU near the pseudoknot junction region renders it more vulnerable to this disruption. The quantitative estimation of differences in the unfolding paths was carried out using force extension curves, potential of mean force profiles, and the opening of different Watson-Crick and non-Watson-Crick interactions. The results provide a quantified view in which the unfolding paths of the small RNA structures can be used for investigating the programmability of RNA chains for designing RNA switches and aptamers as their biological folding and unfolding could be assessed and manipulated.

摘要

对核糖核酸(RNA)结构进行的机械展开研究是一个备受关注的课题,因为它们揭示了这些结构的高阶组装原理。假结形成是实现这种高阶组装的最基本方式之一,RNA中的离散二级结构单元彼此靠近形成三级结构。我们使用引导分子动力学(SMD)模拟,研究了五个RNA假结结构的展开过程,这些结构在螺旋或环中的碱基取代方面彼此不同。我们的SMD模拟揭示了具有生物功能的RNA假结的展开方式以及一级结构变化对该展开途径的影响,为这些结构功能背后的驱动力提供了必要的见解。我们观察到,环序列中的A→C突变使假结对力诱导的破坏比其野生型结构更具抗性。与此相反,假结连接区域附近的碱基对替换GC→AU使其更容易受到这种破坏。使用力-伸长曲线、平均力势分布以及不同沃森-克里克和非沃森-克里克相互作用的打开情况,对展开路径的差异进行了定量估计。结果提供了一个量化的观点,即小RNA结构的展开路径可用于研究RNA链的可编程性,以设计RNA开关和适体,因为它们的生物折叠和展开可以被评估和操纵。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验