Suppr超能文献

光催化过程中氧化钛/液体界面处电子路径的区分及助催化剂效应。

Distinction of electron pathways at titanium oxide/liquid interfaces in photocatalytic processes and co-catalyst effects.

作者信息

Kuwahara Shota, Katayama Kenji

机构信息

Department of Chemistry, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan.

Department of Applied Chemistry, Chuo University, 1-13-27, Kasuga, Bunkyo, Tokyo 112-8551, Japan.

出版信息

Phys Chem Chem Phys. 2016 Sep 14;18(36):25271-25276. doi: 10.1039/c6cp04016k.

Abstract

Photocatalytic reactions include several different steps and routes for photoexcited carriers, and each dynamic is closely related to the reaction efficiency. Although commonly used time-resolved techniques can reveal the kinetics of photoexcited carriers, the reaction pathways are difficult to distinguish due to decay kinetics extending over many temporal orders and various contributions from the carriers and species involved. Herein, we report the distinction of the electron dynamics in the photocatalytic processes of titanium oxide through the combination of the transient grating method and maximum entropy analysis for the estimation of time constants. We were able to confirm three different carrier responses corresponding to an intrinsic recombination, an interfacial transfer or the decay of surface-trapped electrons, and the decay of polarons. Based on the responses, it appears that both gold and platinum work as good electron acceptors, but that only platinum shortened the lifetime of the polaron state due to the acceleration in the adsorption/desorption exchange of ions, which explains the shorter cycles of the photocatalytic reactions for platinum.

摘要

光催化反应包括光激发载流子的几个不同步骤和途径,并且每个动力学过程都与反应效率密切相关。尽管常用的时间分辨技术可以揭示光激发载流子的动力学,但由于衰减动力学跨越多个时间量级以及所涉及的载流子和物种的各种贡献,反应途径很难区分。在此,我们通过瞬态光栅方法和用于估计时间常数的最大熵分析相结合,报告了氧化钛光催化过程中电子动力学的区分。我们能够确认三种不同的载流子响应,分别对应于本征复合、界面转移或表面捕获电子的衰减以及极化子的衰减。基于这些响应,似乎金和铂都作为良好的电子受体起作用,但只有铂由于离子吸附/解吸交换的加速而缩短了极化子态的寿命,这解释了铂光催化反应的循环周期更短。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验