State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
Nanoscale. 2016 Oct 6;8(39):17090-17095. doi: 10.1039/c6nr06325j.
The formation of electrochemical activated cations in electrode materials to induce multiple-electron transfer reactions is a challenge for high-energy storage systems. Herein, highly electroactive Ni-based colloidal electrode materials have been synthesized by in situ electrochemical activation of a NiCl electrode. The highest specific capacitance of the activated Ni-based electrodes was 10 286 F g at a current density of 3 A g, indicating that a three-electron Faradaic redox reaction (Ni ↔ Ni) occurred. Upon potential cycling and constant potential activation, a decrease in the charge transfer resistance can be found. Activation and utilization of multiple-electron reactions is an efficient route to increase the energy density of supercapacitors. This newly designed colloidal pseudocapacitor is compatible with inorganic pseudocapacitor chemistry, which enables us to use metal cations directly via their commercial salts rather than their oxide/hydroxide compounds.
在电极材料中形成电化学活化阳离子以诱导多电子转移反应是高能存储系统面临的挑战。在此,通过原位电化学活化 NiCl 电极合成了高电活性的 Ni 基胶体电极材料。在电流密度为 3 A g 时,活化 Ni 基电极的最大比电容为 10286 F g,表明发生了三电子 Faradaic 氧化还原反应(Ni↔Ni)。在电位循环和恒电位活化过程中,可以发现电荷转移电阻降低。通过活化和利用多电子反应是提高超级电容器能量密度的有效途径。这种新设计的胶体赝电容器与无机赝电容器化学兼容,使我们能够直接使用金属阳离子,而无需使用它们的氧化物/氢氧化物化合物。