Department of Chemistry and Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, USA.
J Am Chem Soc. 2010 Jun 2;132(21):7472-7. doi: 10.1021/ja102267j.
Ni(OH)(2) nanocrystals grown on graphene sheets with various degrees of oxidation are investigated as electrochemical pseudocapacitor materials for potential energy storage applications. Single-crystalline Ni(OH)(2) hexagonal nanoplates directly grown on lightly oxidized, electrically conducting graphene sheets (GS) exhibit a high specific capacitance of approximately 1335 F/g at a charge and discharge current density of 2.8 A/g and approximately 953 F/g at 45.7 A/g with excellent cycling ability. The high specific capacitance and remarkable rate capability are promising for applications in supercapacitors with both high energy and power densities. A simple physical mixture of pre-synthesized Ni(OH)(2) nanoplates and graphene sheets shows lower specific capacitance, highlighting the importance of direct growth of nanomaterials on graphene to impart intimate interactions and efficient charge transport between the active nanomaterials and the conducting graphene network. Single-crystalline Ni(OH)(2) nanoplates directly grown on graphene sheets also significantly outperform small Ni(OH)(2) nanoparticles grown on heavily oxidized, electrically insulating graphite oxide (GO), suggesting that the electrochemical performance of these composites is dependent on the quality of graphene substrates and the morphology and crystallinity of the nanomaterials grown on top. These results suggest the importance of rational design and synthesis of graphene-based nanocomposite materials for high-performance energy applications.
研究了不同氧化程度的石墨烯片上生长的 Ni(OH)(2)纳米晶作为电化学赝电容器材料,用于潜在的储能应用。直接生长在轻度氧化、导电石墨烯片 (GS) 上的单晶 Ni(OH)(2) 六方纳米板在 2.8 A/g 的充放电电流密度下具有约 1335 F/g 的高比电容和约 953 F/g 在 45.7 A/g 时具有出色的循环能力。高比电容和显著的倍率性能有望应用于具有高能量和功率密度的超级电容器。预合成的 Ni(OH)(2)纳米板和石墨烯片的简单物理混合物显示出较低的比电容,这突出了直接在石墨烯上生长纳米材料以赋予活性纳米材料与导电石墨烯网络之间的紧密相互作用和有效电荷传输的重要性。直接生长在石墨烯片上的单晶 Ni(OH)(2)纳米板也明显优于在高度氧化、电绝缘的石墨氧化物 (GO) 上生长的小 Ni(OH)(2)纳米颗粒,这表明这些复合材料的电化学性能取决于石墨烯基底的质量以及顶部生长的纳米材料的形态和结晶度。这些结果表明,对于高性能能源应用,合理设计和合成基于石墨烯的纳米复合材料的重要性。