IEEE Trans Image Process. 2017 Sep;26(9):4331-4346. doi: 10.1109/TIP.2016.2615423. Epub 2016 Oct 5.
We investigate the scalable image classification problem with a large number of categories. Hierarchical visual data structures are helpful for improving the efficiency and performance of large-scale multi-class classification. We propose a novel image classification method based on learning hierarchical inter-class structures. Specifically, we first design a fast algorithm to compute the similarity metric between categories, based on which a visual tree is constructed by hierarchical spectral clustering. Using the learned visual tree, a test sample label is efficiently predicted by searching for the best path over the entire tree. The proposed method is extensively evaluated on the ILSVRC2010 and Caltech 256 benchmark datasets. The experimental results show that our method obtains significantly better category hierarchies than other state-of-the-art visual tree-based methods and, therefore, much more accurate classification.
我们研究了具有大量类别的可扩展图像分类问题。分层视觉数据结构有助于提高大规模多类分类的效率和性能。我们提出了一种基于学习分层类间结构的新的图像分类方法。具体来说,我们首先设计了一种快速算法来计算类别之间的相似性度量,在此基础上通过分层谱聚类构建视觉树。利用学习到的视觉树,通过在整个树中搜索最佳路径,有效地预测测试样本标签。我们在 ILSVRC2010 和 Caltech 256 基准数据集上进行了广泛的评估。实验结果表明,与其他最先进的基于视觉树的方法相比,我们的方法获得了显著更好的类别层次结构,因此分类更加准确。