State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, USA.
Nat Nanotechnol. 2017 Jan;12(1):55-60. doi: 10.1038/nnano.2016.182. Epub 2016 Oct 10.
How to suppress the performance deterioration of thermoelectric materials in the intrinsic excitation region remains a key challenge. The magnetic transition of permanent magnet nanoparticles from ferromagnetism to paramagnetism provides an effective approach to finding the solution to this challenge. Here, we have designed and prepared magnetic nanocomposite thermoelectric materials consisting of BaFeO nanoparticles and BaInCoSb matrix. It was found that the electrical transport behaviours of the nanocomposites are controlled by the magnetic transition of BaFeO nanoparticles from ferromagnetism to paramagnetism. BaFeO nanoparticles trap electrons below the Curie temperature (T) and release the trapped electrons above the T, playing an 'electron repository' role in maintaining high figure of merit ZT. BaFeO nanoparticles produce two types of magnetoelectric effect-electron spiral motion and magnon-drag thermopower-as well as enhancing phonon scattering. Our work demonstrates that the performance deterioration of thermoelectric materials in the intrinsic excitation region can be suppressed through the magnetic transition of permanent magnet nanoparticles.
如何抑制本征激发区域内热电材料性能的恶化仍然是一个关键挑战。通过研究发现,永磁纳米颗粒的磁转变从铁磁性到顺磁性为解决这一挑战提供了一个有效的途径。在这里,我们设计并制备了由 BaFeO 纳米颗粒和 BaInCoSb 基体组成的磁性纳米复合热电材料。研究发现,纳米复合材料的输运性能受到 BaFeO 纳米颗粒从铁磁性到顺磁性的磁转变的控制。BaFeO 纳米颗粒在居里温度(T)以下捕获电子,在 T 以上释放捕获的电子,在保持高品质因数 ZT 方面发挥了“电子库”的作用。BaFeO 纳米颗粒产生两种类型的磁电效应——电子螺旋运动和磁声热功率——并增强了声子散射。我们的工作表明,通过永磁纳米颗粒的磁转变可以抑制本征激发区域内热电材料性能的恶化。