Garmroudi Fabian, Serhiienko Illia, Parzer Michael, Ghosh Sanyukta, Ziolkowski Pawel, Oppitz Gregor, Nguyen Hieu Duy, Bourgès Cédric, Hattori Yuya, Riss Alexander, Steyrer Sebastian, Rogl Gerda, Rogl Peter, Schafler Erhard, Kawamoto Naoyuki, Müller Eckhard, Bauer Ernst, de Boor Johannes, Mori Takao
Institute of Solid State Physics, TU Wien, Vienna, Austria.
International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, Japan.
Nat Commun. 2025 Mar 26;16(1):2976. doi: 10.1038/s41467-025-57250-6.
Decoupling charge and heat transport is essential for optimizing thermoelectric materials. Strategies to inhibit lattice-driven heat transport, however, also compromise carrier mobility, limiting the performance of most thermoelectrics, including FeVAl Heusler compounds. Here, we demonstrate an innovative approach, which bypasses this tradeoff: via liquid-phase sintering, we incorporate the archetypal topological insulator BiSb between FeVTaAl grains. Structural investigations alongside extensive thermoelectric and magneto-transport measurements reveal distinct modifications in the microstructure, a reduced lattice thermal conductivity and a simultaneously enhanced carrier mobility arising from topologically protected charge transport along the grain boundaries. This yields a huge performance boost, resulting in one of the highest figure of merits among both half- and full-Heusler compounds, z ≈ 1.6 × 10 K (zT ≈ 0.5) at 295 K. Our findings highlight the potential of topological-insulating secondary phases to decouple charge and heat transport and call for more advanced theoretical studies of multiphase composites.
解耦电荷与热传输对于优化热电材料至关重要。然而,抑制晶格驱动热传输的策略也会损害载流子迁移率,限制了包括FeVAl赫斯勒化合物在内的大多数热电材料的性能。在此,我们展示了一种创新方法,绕过了这种权衡:通过液相烧结,我们在FeVTaAl晶粒之间引入了典型的拓扑绝缘体BiSb。结合广泛的热电和磁输运测量进行的结构研究揭示了微观结构的明显变化、晶格热导率的降低以及沿晶界的拓扑保护电荷传输导致的载流子迁移率同时提高。这带来了巨大的性能提升,使得在半赫斯勒化合物和全赫斯勒化合物中,该材料在295 K时的优值z≈1.6×10 K(zT≈0.5)成为最高值之一。我们的研究结果突出了拓扑绝缘第二相对解耦电荷与热传输的潜力,并呼吁对多相复合材料进行更深入的理论研究。