Suppr超能文献

基于腹腔镜的活体人肝双向反射分布函数估计方法。

A laparoscopy-based method for BRDF estimation from in vivo human liver.

机构信息

Institute of Informatics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil; Federal Institute of Paraná, Londrina, Brazil.

Institute of Informatics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.

出版信息

Med Image Anal. 2017 Jan;35:620-632. doi: 10.1016/j.media.2016.09.005. Epub 2016 Sep 29.

Abstract

While improved visual realism is known to enhance training effectiveness in virtual surgery simulators, the advances on realistic rendering for these simulators is slower than similar simulations for man-made scenes. One of the main reasons for this is that in vivo data is hard to gather and process. In this paper, we propose the analysis of videolaparoscopy data to compute the Bidirectional Reflectance Distribution Function (BRDF) of living organs as an input to physically based rendering algorithms. From the interplay between light and organic matter recorded in video images, we propose the definition of a process capable of establishing the BRDF for inside-the-body organic surfaces. We present a case study around the liver with patient-specific rendering under global illumination. Results show that despite the limited range of motion allowed within the body, the computed BRDF presents a high-coverage of the sampled regions and produces plausible renderings.

摘要

虽然提高视觉逼真度已被证实可以增强虚拟手术模拟器的培训效果,但这些模拟器的逼真渲染技术的发展速度却比人造场景的类似模拟要慢。造成这种情况的一个主要原因是,活体数据难以收集和处理。在本文中,我们提出了分析腹腔镜视频数据以计算活体器官双向反射分布函数(BRDF)的方法,作为基于物理的渲染算法的输入。我们从视频图像中记录的光与有机物的相互作用出发,提出了一个能够为体内有机表面建立 BRDF 的过程定义。我们围绕肝脏进行了一项案例研究,实现了基于全局光照的患者特定渲染。结果表明,尽管体内允许的运动范围有限,但计算出的 BRDF 对采样区域具有高度的覆盖范围,并产生了合理的渲染效果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验