Suppr超能文献

用于物体逆向渲染的可逆变神经 BRDF。

Invertible Neural BRDF for Object Inverse Rendering.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2022 Dec;44(12):9380-9395. doi: 10.1109/TPAMI.2021.3129537. Epub 2022 Nov 7.

Abstract

We introduce a novel neural network-based BRDF model and a Bayesian framework for object inverse rendering, i.e., joint estimation of reflectance and natural illumination from a single image of an object of known geometry. The BRDF is expressed with an invertible neural network, namely, normalizing flow, which provides the expressive power of a high-dimensional representation, computational simplicity of a compact analytical model, and physical plausibility of a real-world BRDF. We extract the latent space of real-world reflectance by conditioning this model, which directly results in a strong reflectance prior. We refer to this model as the invertible neural BRDF model (iBRDF). We also devise a deep illumination prior by leveraging the structural bias of deep neural networks. By integrating this novel BRDF model and reflectance and illumination priors in a MAP estimation formulation, we show that this joint estimation can be computed efficiently with stochastic gradient descent. We experimentally validate the accuracy of the invertible neural BRDF model on a large number of measured data and demonstrate its use in object inverse rendering on a number of synthetic and real images. The results show new ways in which deep neural networks can help solve challenging radiometric inverse problems.

摘要

我们提出了一种新的基于神经网络的 BRDF 模型和一种贝叶斯框架,用于物体的逆渲染,即从具有已知几何形状的物体的单个图像中联合估计反射率和自然光。BRDF 用可逆变型神经网络表示,即归一化流,它提供了高维表示的表达能力、紧凑解析模型的计算简单性以及现实世界 BRDF 的物理合理性。我们通过对该模型进行条件处理来提取真实反射率的潜在空间,这直接导致了强烈的反射率先验。我们将此模型称为可逆变型神经 BRDF 模型 (iBRDF)。我们还通过利用深度神经网络的结构偏差设计了一种深度光照先验。通过在 MAP 估计公式中集成这个新的 BRDF 模型和反射率和光照先验,我们表明这种联合估计可以通过随机梯度下降有效地计算。我们在大量测量数据上验证了可逆变型神经 BRDF 模型的准确性,并在一些合成和真实图像上展示了它在物体逆渲染中的应用。结果表明,深度神经网络可以帮助解决具有挑战性的辐射逆问题的新方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验