Suppr超能文献

富含亮氨酸重复激酶2通过Beclin-1对巨自噬进行不依赖mTOR的调控。

mTOR independent regulation of macroautophagy by Leucine Rich Repeat Kinase 2 via Beclin-1.

作者信息

Manzoni Claudia, Mamais Adamantios, Roosen Dorien A, Dihanich Sybille, Soutar Marc P M, Plun-Favreau Helene, Bandopadhyay Rina, Hardy John, Tooze Sharon A, Cookson Mark R, Lewis Patrick A

机构信息

School of Pharmacy, University of Reading, Whiteknights, Reading, RG6 6AP, United Kingdom.

Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, United Kingdom.

出版信息

Sci Rep. 2016 Oct 12;6:35106. doi: 10.1038/srep35106.

Abstract

Leucine rich repeat kinase 2 is a complex enzyme with both kinase and GTPase activities, closely linked to the pathogenesis of several human disorders including Parkinson's disease, Crohn's disease, leprosy and cancer. LRRK2 has been implicated in numerous cellular processes; however its physiological function remains unclear. Recent reports suggest that LRRK2 can act to regulate the cellular catabolic process of macroautophagy, although the precise mechanism whereby this occurs has not been identified. To investigate the signalling events through which LRRK2 acts to influence macroautophagy, the mammalian target of rapamycin (mTOR)/Unc-51-like kinase 1 (ULK1) and Beclin-1/phosphatidylinositol 3-kinase (PI3K) pathways were evaluated in astrocytic cell models in the presence and absence of LRRK2 kinase inhibitors. Chemical inhibition of LRRK2 kinase activity resulted in the stimulation of macroautophagy in a non-canonical fashion, independent of mTOR and ULK1, but dependent upon the activation of Beclin 1-containing class III PI3-kinase.

摘要

富含亮氨酸重复激酶2是一种具有激酶和GTP酶活性的复合酶,与包括帕金森病、克罗恩病、麻风病和癌症在内的多种人类疾病的发病机制密切相关。LRRK2参与了众多细胞过程;然而其生理功能仍不清楚。最近的报告表明,LRRK2可调节巨自噬的细胞分解代谢过程,尽管其发生的确切机制尚未明确。为了研究LRRK2影响巨自噬的信号转导事件,在有和没有LRRK2激酶抑制剂的情况下,在星形胶质细胞模型中评估了雷帕霉素哺乳动物靶标(mTOR)/Unc-51样激酶1(ULK1)和Beclin-1/磷脂酰肌醇3激酶(PI3K)途径。LRRK2激酶活性的化学抑制以非经典方式刺激巨自噬,独立于mTOR和ULK1,但依赖于含Beclin 1的III类PI3激酶的激活。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/743d/5059726/9a78c74d10b9/srep35106-f1.jpg

相似文献

2
mTOR independent alteration in ULK1 Ser758 phosphorylation following chronic LRRK2 kinase inhibition.
Biosci Rep. 2018 Apr 20;38(2). doi: 10.1042/BSR20171669. Print 2018 Apr 26.
3
How autophagy controls the intestinal epithelial barrier.
Autophagy. 2022 Jan;18(1):86-103. doi: 10.1080/15548627.2021.1909406. Epub 2021 Apr 27.
4
Inhibition of LRRK2 kinase activity stimulates macroautophagy.
Biochim Biophys Acta. 2013 Dec;1833(12):2900-2910. doi: 10.1016/j.bbamcr.2013.07.020. Epub 2013 Aug 1.
5
Analysis of macroautophagy related proteins in G2019S LRRK2 Parkinson's disease brains with Lewy body pathology.
Brain Res. 2018 Dec 15;1701:75-84. doi: 10.1016/j.brainres.2018.07.023. Epub 2018 Jul 25.
6
ULK1 and JNK are involved in mitophagy incurred by LRRK2 G2019S expression.
Protein Cell. 2013 Sep;4(9):711-21. doi: 10.1007/s13238-013-3910-3. Epub 2013 Sep 10.
7
LRRK2 and Autophagy.
Adv Neurobiol. 2017;14:89-105. doi: 10.1007/978-3-319-49969-7_5.
9
Therapeutic Targeting of Autosomal Parkinson's Disease by Modulation of Leucine-Rich Repeat Kinase 2 (LRRK2) Protein.
Brain Res. 2025 Aug 1;1860:149674. doi: 10.1016/j.brainres.2025.149674. Epub 2025 May 8.
10
Dopaminergic neurodegeneration induced by Parkinson's disease-linked G2019S LRRK2 is dependent on kinase and GTPase activity.
Proc Natl Acad Sci U S A. 2020 Jul 21;117(29):17296-17307. doi: 10.1073/pnas.1922184117. Epub 2020 Jul 6.

引用本文的文献

1
Role of LRRK2 in axonal transport and Parkinson's disease.
Biochem J. 2025 Jun 25;482(13):BCJ20253133. doi: 10.1042/BCJ20253133.
3
Autophagy Process in Parkinson's Disease Depends on Mutations in the GBA1 and LRRK2 Genes.
Biochem Genet. 2025 May 19. doi: 10.1007/s10528-025-11125-z.
4
Autophagy Dysfunction and Neurodegeneration: Where Does It Go Wrong?
J Mol Biol. 2025 Sep 15;437(18):169219. doi: 10.1016/j.jmb.2025.169219. Epub 2025 May 16.
5
Unraveling the role of autophagy regulation in Crohn's disease: from genetic mechanisms to potential therapeutics.
Adv Biotechnol (Singap). 2024 Mar 21;2(2):14. doi: 10.1007/s44307-024-00021-z.
6
Dapagliflozin ameliorates Lafora disease phenotype in a zebrafish model.
Biomed Pharmacother. 2025 Feb;183:117800. doi: 10.1016/j.biopha.2024.117800. Epub 2025 Jan 2.
7
The role of autophagy in brain health and disease: Insights into exosome and autophagy interactions.
Heliyon. 2024 Oct 4;10(21):e38959. doi: 10.1016/j.heliyon.2024.e38959. eCollection 2024 Nov 15.
8
Lysosomal dysfunction in α-synuclein pathology: molecular mechanisms and therapeutic strategies.
Cell Mol Life Sci. 2024 Sep 3;81(1):382. doi: 10.1007/s00018-024-05419-5.
9
The Involvement of Neuroinflammation in the Onset and Progression of Parkinson's Disease.
Int J Mol Sci. 2023 Sep 26;24(19):14582. doi: 10.3390/ijms241914582.
10
Role of Astrogliosis in the Pathogenesis of Parkinson's Disease: Insights into Astrocytic Nrf2 Pathway as a Potential Therapeutic Target.
CNS Neurol Disord Drug Targets. 2024;23(8):1015-1029. doi: 10.2174/0118715273270473231002104610.

本文引用的文献

1
Genetics in Parkinson disease: Mendelian versus non-Mendelian inheritance.
J Neurochem. 2016 Oct;139 Suppl 1(Suppl 1):59-74. doi: 10.1111/jnc.13593. Epub 2016 Apr 18.
2
Regulation of Autophagy By Signaling Through the Atg1/ULK1 Complex.
J Mol Biol. 2016 May 8;428(9 Pt A):1725-41. doi: 10.1016/j.jmb.2016.03.030. Epub 2016 Apr 6.
3
Digesting the Expanding Mechanisms of Autophagy.
Trends Cell Biol. 2016 Aug;26(8):624-635. doi: 10.1016/j.tcb.2016.03.006. Epub 2016 Apr 2.
4
A Missense LRRK2 Variant Is a Risk Factor for Excessive Inflammatory Responses in Leprosy.
PLoS Negl Trop Dis. 2016 Feb 4;10(2):e0004412. doi: 10.1371/journal.pntd.0004412. eCollection 2016 Feb.
5
Autophagy and Alpha-Synuclein: Relevance to Parkinson's Disease and Related Synucleopathies.
Mov Disord. 2016 Feb;31(2):178-92. doi: 10.1002/mds.26477. Epub 2016 Jan 27.
6
Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition).
Autophagy. 2016;12(1):1-222. doi: 10.1080/15548627.2015.1100356.
8
LRRK2 autophosphorylation enhances its GTPase activity.
FASEB J. 2016 Jan;30(1):336-47. doi: 10.1096/fj.15-277095. Epub 2015 Sep 22.
10
Autophagosome-lysosome fusion is independent of V-ATPase-mediated acidification.
Nat Commun. 2015 May 11;6:7007. doi: 10.1038/ncomms8007.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验