Suppr超能文献

自噬如何控制肠道上皮屏障。

How autophagy controls the intestinal epithelial barrier.

机构信息

Department of Immunology, University of Toronto, Toronto, Canada.

Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.

出版信息

Autophagy. 2022 Jan;18(1):86-103. doi: 10.1080/15548627.2021.1909406. Epub 2021 Apr 27.

Abstract

Macroautophagy/autophagy is a cellular catabolic process that results in lysosome-mediated recycling of organelles and protein aggregates, as well as the destruction of intracellular pathogens. Its role in the maintenance of the intestinal epithelium is of particular interest, as several autophagy-related genes have been associated with intestinal disease. Autophagy and its regulatory mechanisms are involved in both homeostasis and repair of the intestine, supporting intestinal barrier function in response to cellular stress through tight junction regulation and protection from cell death. Furthermore, a clear role has emerged for autophagy not only in secretory cells but also in intestinal stem cells, where it affects their metabolism, as well as their proliferative and regenerative capacity. Here, we review the physiological role of autophagy in the context of intestinal epithelial maintenance and how genetic mutations affecting autophagy contribute to the development of intestinal disease. AKT1S1: AKT1 substrate 1; AMBRA1: autophagy and beclin 1 regulator 1; AMPK: AMP-activated protein kinase; APC: APC regulator of WNT signaling pathway; ATF6: activating transcription factor 6; ATG: autophagy related; mice: mice with a specific deletion of in intestinal epithelial cells; ATP: adenosine triphosphate; BECN1: beclin 1; bsk/Jnk: basket; CADPR: cyclic ADP ribose; CALCOCO2: calcium binding and coiled-coil domain 2; CASP3: caspase 3; CD: Crohn disease; CDH1/E-cadherin: cadherin 1; CF: cystic fibrosis; CFTR: CF transmembrane conductance regulator; CGAS: cyclic GMP-AMP synthase; CLDN2: claudin 2; CoPEC: colibactin-producing ; CRC: colorectal cancer; CYP1A1: cytochrome P450 family 1 subfamily A member 1; DC: dendritic cell; DDIT3: DNA damage inducible transcript 3; DEPTOR: DEP domain containing MTOR interacting protein; DSS: dextran sulfate sodium; EGF: epidermal growth factor; EGFR: epidermal growth factor receptor; EIF2A: eukaryotic translation initiation factor 2A; EIF2AK3: eukaryotic translation initiation factor 2 alpha kinase 3; EIF2AK4/GCN2: eukaryotic translation initiation factor 2 alpha kinase 4; ER: endoplasmic reticulum; ERN1: endoplasmic reticulum to nucleus signaling 1; GABARAP: GABA type A receptor-associated protein; HMGB1: high mobility group box 1; HSPA5/GRP78: heat shock protein family A (Hsp70) member 5; IBD: inflammatory bowel disease; IEC: intestinal epithelial cell; IFN: interferon; IFNG/IFNγ:interferon gamma; IL: interleukin; IRGM: immunity related GTPase M; ISC: intestinal stem cell; LGR5: leucine rich repeat containing G protein-coupled receptor 5; LRRK2: leucine rich repeat kinase 2; MAP1LC3A/LC3: microtubule associated protein 1 light chain 3 alpha; MAPK/JNK: mitogen-activated protein kinase; MAPK14/p38 MAPK: mitogen-activated protein kinase 14; MAPKAP1: MAPK associated protein 1; MAVS: mitochondrial antiviral signaling protein; miRNA: microRNA; MLKL: mixed lineage kinase domain like pseudokinase; MLST8: MTOR associated protein, LST8 homolog; MNV: murine norovirus; MTOR: mechanistic target of rapamycin kinase; NBR1: NBR1 autophagy cargo receptor; NLRP: NLR family pyrin domain containing; NOD: nucleotide binding oligomerization domain containing; NRBF2: nuclear receptor binding factor 2; OPTN: optineurin; OXPHOS: oxidative phosphorylation; P: phosphorylation; Patj: PATJ crumbs cell polarity complex component; PE: phosphatidyl-ethanolamine; PI3K: phosphoinositide 3-kinase; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; PIK3R4: phosphoinositide-3-kinase regulatory subunit 4; PPARG: peroxisome proliferator activated receptor gamma; PRR5: proline rich 5; PRR5L: proline rich 5 like; PtdIns3K: phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol 3-phosphate; RB1CC1/FIP200: RB1 inducible coiled-coil 1; RER: rough endoplasmic reticulum; RHEB: Ras homolog, MTORC1 binding; RICTOR: RPTOR independent companion of MTOR complex 2; RIPK1: receptor interacting serine/threonine kinase 1; ROS: reactive oxygen species; RPTOR: regulatory associated protein of MTOR complex 1; RPS6KB1: ribosomal protein S6 kinase B1; SH3GLB1: SH3 domain containing GRB2 like, endophilin B1; SNP: single-nucleotide polymorphism; SQSTM1: sequestosome 1; STAT3: signal transducer and activator of transcription 3; STING1: stimulator of interferon response cGAMP interactor 1; TA: transit-amplifying; TFEB: transcription factor EB; TFE3: transcription factor binding to IGHM enhancer 3; TGM2: transglutaminase 2; TJ: tight junction; TJP1/ZO1: tight junction protein 1; TNBS: 2,4,6-trinitrobenzene sulfonic acid; TNF/TNFα: tumor necrosis factor; Tor: target of rapamycin; TRAF: TNF receptor associated factor; TRIM11: tripartite motif containing 11; TRP53: transformation related protein 53; TSC: TSC complex subunit; Ub: ubiquitin; UC: ulcerative colitis; ULK1: unc-51 like autophagy activating kinase 1; USO1/p115: USO1 vesicle transport factor; UVRAG: UV radiation resistance associated; WIPI: WD repeat domain, phosphoinositide interacting; WNT: WNT family member; XBP1: X-box binding protein 1; ZFYVE1/DFCP1: zinc finger FYVE-type containing 1.

摘要

自噬是一种细胞溶酶体介导的分解代谢过程,导致细胞器和蛋白聚集体的回收,以及细胞内病原体的破坏。它在维持肠道上皮中的作用特别有趣,因为几种自噬相关基因与肠道疾病有关。自噬及其调节机制参与了肠道的稳态和修复,通过紧密连接调节和防止细胞死亡来支持肠道屏障功能。此外,自噬不仅在分泌细胞中,而且在肠道干细胞中也发挥了明显的作用,影响其代谢以及增殖和再生能力。在这里,我们综述了自噬在肠道上皮维持中的生理作用,以及影响自噬的基因突变如何导致肠道疾病的发展。AKT1S1:AKT1 底物 1;AMBRA1:自噬和 beclin 1 调节因子 1;AMPK:AMP 激活的蛋白激酶;APC:APC 调节 WNT 信号通路;ATF6:激活转录因子 6;ATG:自噬相关;小鼠:在肠道上皮细胞中特异性缺失的小鼠;ATP:三磷酸腺苷;BECN1:beclin 1;bsk/Jnk:basket;CADPR:环 ADP 核糖;CALCOCO2:钙结合和卷曲螺旋域 2;CASP3:半胱天冬酶 3;CD:克罗恩病;CDH1/E-cadherin:钙黏蛋白 1;CF:囊性纤维化;CFTR:CF 跨膜电导调节因子;CGAS:环状 GMP-AMP 合酶;CLDN2:紧密连接蛋白 2;CoPEC:产 colibactin 的;CRC:结直肠癌;CYP1A1:细胞色素 P450 家族 1 亚家族 A 成员 1;DC:树突状细胞;DDIT3:DNA 损伤诱导转录 3;DEPTOR:DEP 结构域包含 MTOR 相互作用蛋白;DSS:葡聚糖硫酸钠;EGF:表皮生长因子;EGFR:表皮生长因子受体;EIF2A:真核翻译起始因子 2A;EIF2AK3:真核翻译起始因子 2α激酶 3;EIF2AK4/GCN2:真核翻译起始因子 2α激酶 4;ER:内质网;ERN1:内质网到细胞核信号 1;GABARAP:GABA 型 A 受体相关蛋白;HMGB1:高迁移率族蛋白 B1;HSPA5/GRP78:热休克蛋白家族 A(Hsp70)成员 5;IBD:炎症性肠病;IEC:肠道上皮细胞;IFN:干扰素;IFNG/IFNγ:干扰素伽马;IL:白细胞介素;IRGM:免疫相关 GTP 酶 M;ISC:肠道干细胞;LGR5:富含亮氨酸重复的 G 蛋白偶联受体 5;LRRK2:富含亮氨酸重复激酶 2;MAP1LC3A/LC3:微管相关蛋白 1 轻链 3α;MAPK/JNK:丝裂原激活的蛋白激酶;MAPK14/p38 MAPK:丝裂原激活的蛋白激酶 14;MAPKAP1:MAPK 相关蛋白 1;MAVS:线粒体抗病毒信号蛋白;miRNA:微 RNA;MLKL:混合谱系激酶结构域样伪激酶;MLST8:MTOR 相关蛋白,LST8 同源物;MNV:鼠诺如病毒;MTOR:雷帕霉素靶蛋白激酶;NBR1:NBR1 自噬货物受体;NLRP:NLR 家族富含吡咯域;NOD:核苷酸结合寡聚化结构域;NRBF2:核受体结合因子 2;OPTN:optineurin;OXPHOS:氧化磷酸化;P:磷酸化;Patj:PATJ 面包屑细胞极性复合物成分;PE:磷脂酰乙醇胺;PI3K:磷酸肌醇 3-激酶;PI3K3/VPS34:磷脂酰肌醇 3-激酶催化亚基 3;PIK3R4:磷酸肌醇 3-激酶调节亚基 4;PPARG:过氧化物酶体增殖物激活受体 gamma;PRR5:富含脯氨酸 5;PRR5L:富含脯氨酸 5 样;PtdIns3K:磷脂酰肌醇 3-激酶;PtdIns3P:磷脂酰肌醇 3-磷酸;RB1CC1/FIP200:RB1 诱导卷曲螺旋 1;RER:粗面内质网;RHEB:Ras 同源物,MTORC1 结合;RICTOR:RPTOR 独立的 MTOR 复合物 2 伴侣;RIPK1:受体相互作用丝氨酸/苏氨酸激酶 1;ROS:活性氧物种;RPTOR:MTOR 复合物 1 相关调节蛋白;RPS6KB1:核糖体蛋白 S6 激酶 B1;SH3GLB1:SH3 结构域包含 GRB2 样、内啡肽 B1;SNP:单核苷酸多态性;SQSTM1:自噬体 1;STAT3:信号转导和转录激活因子 3;STING1:干扰素反应 cGAMP 相互作用 1 刺激物;TA:转运扩增;TFEB:转录因子 EB;TFE3:转录因子结合 IGHM 增强子 3;TGM2:转谷氨酰胺酶 2;TJ:紧密连接;TJP1/ZO1:紧密连接蛋白 1;TNBS:2,4,6-三硝基苯磺酸;TNF/TNFα:肿瘤坏死因子;Tor:雷帕霉素靶蛋白;TRAF:肿瘤坏死因子受体相关因子;TRIM11:三肽重复蛋白 11;TRP53:转化相关蛋白 53;TSC:TSC 复合物亚基;Ub:泛素;UC:溃疡性结肠炎;ULK1:UNC-51 样自噬激活激酶 1;USO1/p115:USO1 囊泡运输因子;URAG:紫外线辐射抗性相关;WIPI:WD 重复域,磷酸肌醇相互作用;WNT:WNT 家族成员;XBP1:X 框结合蛋白 1;ZFYVE1/DFCP1:锌指 FYVE 型包含 1.

相似文献

1
How autophagy controls the intestinal epithelial barrier.
Autophagy. 2022 Jan;18(1):86-103. doi: 10.1080/15548627.2021.1909406. Epub 2021 Apr 27.
2
New insights into the interplay between autophagy, gut microbiota and inflammatory responses in IBD.
Autophagy. 2020 Jan;16(1):38-51. doi: 10.1080/15548627.2019.1635384. Epub 2019 Jul 9.
3
Autophagy in the physiological endometrium and cancer.
Autophagy. 2021 May;17(5):1077-1095. doi: 10.1080/15548627.2020.1752548. Epub 2020 May 13.
4
Emerging views of mitophagy in immunity and autoimmune diseases.
Autophagy. 2020 Jan;16(1):3-17. doi: 10.1080/15548627.2019.1603547. Epub 2019 Apr 21.
5
MITF-MIR211 axis is a novel autophagy amplifier system during cellular stress.
Autophagy. 2019 Mar;15(3):375-390. doi: 10.1080/15548627.2018.1531197. Epub 2018 Oct 16.
8
Copper metabolism in cell death and autophagy.
Autophagy. 2023 Aug;19(8):2175-2195. doi: 10.1080/15548627.2023.2200554. Epub 2023 Apr 16.
9
The ménage à trois of autophagy, lipid droplets and liver disease.
Autophagy. 2022 Jan;18(1):50-72. doi: 10.1080/15548627.2021.1895658. Epub 2021 Apr 2.
10
Impaired autophagy and APP processing in Alzheimer's disease: The potential role of Beclin 1 interactome.
Prog Neurobiol. 2013 Jul-Aug;106-107:33-54. doi: 10.1016/j.pneurobio.2013.06.002. Epub 2013 Jul 1.

引用本文的文献

1
Microbiota-mediated mechanisms of mucosal immunity across the lifespan.
Nat Immunol. 2025 Sep 16. doi: 10.1038/s41590-025-02281-w.
2
S-glutathionylation modification of proteins and the association with cellular death (Review).
Med Int (Lond). 2025 Aug 22;5(6):64. doi: 10.3892/mi.2025.263. eCollection 2025 Nov-Dec.
3
Gut microbiota interplay with autophagy-EMT dynamics in colorectal cancer.
Front Cell Dev Biol. 2025 Aug 21;13:1608248. doi: 10.3389/fcell.2025.1608248. eCollection 2025.
7
An oxidative stress related gene signature predicts prognosis in cholangiocarcinoma.
Discov Oncol. 2025 Aug 18;16(1):1576. doi: 10.1007/s12672-025-03434-x.
8
Gut-liver axis in diabetes: Mechanisms and therapeutic opportunities.
World J Gastroenterol. 2025 Aug 7;31(29):109090. doi: 10.3748/wjg.v31.i29.109090.
9
Biological Modulation of Autophagy by Nanoplastics: A Current Overview.
Int J Mol Sci. 2025 Jul 22;26(15):7035. doi: 10.3390/ijms26157035.
10
Regulation of intracellular proliferation of Salmonella typhimurium by CD63.
Genes Genomics. 2025 Aug 12. doi: 10.1007/s13258-025-01659-2.

本文引用的文献

1
Essential role for autophagy protein ATG7 in the maintenance of intestinal stem cell integrity.
Proc Natl Acad Sci U S A. 2020 May 19;117(20):11136-11146. doi: 10.1073/pnas.1917174117. Epub 2020 May 5.
3
Gut epithelial TSC1/mTOR controls RIPK3-dependent necroptosis in intestinal inflammation and cancer.
J Clin Invest. 2020 Apr 1;130(4):2111-2128. doi: 10.1172/JCI133264.
4
Innate immune receptor NOD2 mediates LGR5 intestinal stem cell protection against ROS cytotoxicity via mitophagy stimulation.
Proc Natl Acad Sci U S A. 2020 Jan 28;117(4):1994-2003. doi: 10.1073/pnas.1902788117. Epub 2020 Jan 9.
5
Autophagy of Intestinal Epithelial Cells Inhibits Colorectal Carcinogenesis Induced by Colibactin-Producing Escherichia coli in Apc Mice.
Gastroenterology. 2020 Apr;158(5):1373-1388. doi: 10.1053/j.gastro.2019.12.026. Epub 2020 Jan 7.
6
Gut stem cell aging is driven by mTORC1 via a p38 MAPK-p53 pathway.
Nat Commun. 2020 Jan 2;11(1):37. doi: 10.1038/s41467-019-13911-x.
7
Epidemiology of colorectal cancer: incidence, mortality, survival, and risk factors.
Prz Gastroenterol. 2019;14(2):89-103. doi: 10.5114/pg.2018.81072. Epub 2019 Jan 6.
8
The epidemiology of inflammatory bowel disease: East meets west.
J Gastroenterol Hepatol. 2020 Mar;35(3):380-389. doi: 10.1111/jgh.14872. Epub 2019 Nov 24.
9
New insights into the interplay between autophagy, gut microbiota and inflammatory responses in IBD.
Autophagy. 2020 Jan;16(1):38-51. doi: 10.1080/15548627.2019.1635384. Epub 2019 Jul 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验