Gagarinova Alla, Stewart Geordie, Samanfar Bahram, Phanse Sadhna, White Carl A, Aoki Hiroyuki, Deineko Viktor, Beloglazova Natalia, Yakunin Alexander F, Golshani Ashkan, Brown Eric D, Babu Mohan, Emili Andrew
Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada.
Department of Biochemistry and Biomedical Sciences, M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8N 3Z5, Canada.
Cell Rep. 2016 Oct 11;17(3):904-916. doi: 10.1016/j.celrep.2016.09.040.
Bacterial protein synthesis is an essential, conserved, and environmentally responsive process. Yet, many of its components and dependencies remain unidentified. To address this gap, we used quantitative synthetic genetic arrays to map functional relationships among >48,000 gene pairs in Escherichia coli under four culture conditions differing in temperature and nutrient availability. The resulting data provide global functional insights into the roles and associations of genes, pathways, and processes important for efficient translation, growth, and environmental adaptation. We predict and independently verify the requirement of unannotated genes for normal translation, including a previously unappreciated role of YhbY in 30S biogenesis. Dynamic changes in the patterns of genetic dependencies across the four growth conditions and data projections onto other species reveal overarching functional and evolutionary pressures impacting the translation system and bacterial fitness, underscoring the utility of systematic screens for investigating protein synthesis, adaptation, and evolution.
细菌蛋白质合成是一个必不可少、保守且对环境有响应的过程。然而,其许多组成部分和依赖性仍未明确。为了填补这一空白,我们使用定量合成基因阵列来绘制大肠杆菌中超过48,000对基因在四种温度和营养可用性不同的培养条件下的功能关系。所得数据为对高效翻译、生长和环境适应至关重要的基因、途径和过程的作用及关联提供了全局性的功能见解。我们预测并独立验证了未注释基因对正常翻译的需求,包括YhbY在30S生物合成中先前未被认识到的作用。四种生长条件下基因依赖性模式的动态变化以及对其他物种的数据预测揭示了影响翻译系统和细菌适应性的总体功能和进化压力,强调了系统筛选在研究蛋白质合成、适应性和进化方面的实用性。