Erath Jessey, Kemper Danielle, Mugo Elisha, Jacoby Alex, Valenzuela Elizabeth, Jungers Courtney F, Beatty Wandy L, Hashem Yaser, Jovanovic Marko, Djuranovic Sergej, Djuranovic Slavica Pavlovic
Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, USA.
Department of Biological Sciences, Columbia University, New York, NY, USA.
bioRxiv. 2024 Oct 22:2024.10.21.619433. doi: 10.1101/2024.10.21.619433.
Ribosomes are macromolecular RNA-protein complexes that constitute the central machinery responsible for protein synthesis and quality control in the cell. Ribosomes also serve as a hub for multiple non-ribosomal proteins and RNAs that control protein synthesis. However, the purification of ribosomes and associated factors for functional and structural studies requires a large amount of starting biological material and a tedious workflow. Current methods are challenging as they combine ultracentrifugation, the use of sucrose cushions or gradients, expensive equipment, and multiple hours to days of work. Here, we present a rapid, facile, and cost-effective method to isolate ribosomes from or samples for functional and structural studies using single-step enrichment on magnetic beads - RAPPL (RNA Affinity Purification using Poly-Lysine). Using mass spectrometry and western blot analyses, we show that poly-lysine coated beads incubated with and HEK-293 cell lysates enrich specifically for ribosomes and ribosome-associated factors. We demonstrate the ability of RAPPL to isolate ribosomes and translation-associated factors from limited material quantities, as well as a wide variety of biological samples: cell lysates, cells, organs, and whole organisms. Using RAPPL, we characterized and visualized the different effects of various drugs and translation inhibitors on protein synthesis. Our method is compatible with traditional ribosome isolation. It can be used to purify specific complexes from fractions of sucrose gradients or in tandem affinity purifications for ribosome-associated factors. Ribosomes isolated using RAPPL are functionally active and can be used for rapid screening and characterization of ribosome antibiotic resistance. Lastly, we demonstrate the structural applications of RAPPL by purifying and solving the 2.7Å cryo-EM structure of ribosomes from the , an encapsulated yeast causing cryptococcosis. Ribosomes and translational machinery purified with this method are suitable for subsequent functional or structural analyses and provide a solid foundation for researchers to carry out further applications - academic, clinical, or industrial - on ribosomes.
核糖体是大分子RNA - 蛋白质复合物,是细胞内负责蛋白质合成和质量控制的核心机制。核糖体还是多种控制蛋白质合成的非核糖体蛋白质和RNA的汇聚中心。然而,为了进行功能和结构研究而纯化核糖体及相关因子,需要大量起始生物材料和繁琐的工作流程。当前方法具有挑战性,因为它们结合了超速离心、使用蔗糖垫层或梯度、昂贵的设备以及数小时至数天的工作时间。在这里,我们提出了一种快速、简便且经济高效的方法,即使用磁珠上的单步富集 - RAPPL(使用聚赖氨酸的RNA亲和纯化)从细胞或组织样本中分离核糖体,用于功能和结构研究。通过质谱分析和蛋白质免疫印迹分析,我们表明与细胞裂解物和HEK - 293细胞裂解物孵育的聚赖氨酸包被磁珠能够特异性富集核糖体和核糖体相关因子。我们证明了RAPPL能够从有限量的材料以及多种生物样本(细胞裂解物、细胞、器官和整个生物体)中分离核糖体和翻译相关因子。使用RAPPL,我们表征并可视化了各种药物和翻译抑制剂对蛋白质合成的不同影响。我们的方法与传统核糖体分离方法兼容。它可用于从蔗糖梯度级分中纯化特定复合物,或用于核糖体相关因子的串联亲和纯化。使用RAPPL分离的核糖体具有功能活性,可用于核糖体抗生素抗性的快速筛选和表征。最后,我们通过纯化并解析来自新型隐球菌(一种引起隐球菌病的包膜酵母)的核糖体的2.7Å冷冻电镜结构,展示了RAPPL的结构应用。用这种方法纯化的核糖体和翻译机制适用于后续的功能或结构分析,为研究人员在核糖体上开展进一步的学术、临床或工业应用提供了坚实基础。