Suppr超能文献

一种用于高通量生成和优化微滴的自动化系统。

An automated system for high-throughput generation and optimization of microdroplets.

作者信息

Wang Zongjie, Samanipour Roya, Gamaleldin Mohamed, Sakthivel Kabilan, Kim Keekyoung

机构信息

School of Engineering, University of British Columbia , Kelowna, British Columbia V1V 1V7, Canada.

出版信息

Biomicrofluidics. 2016 Sep 27;10(5):054110. doi: 10.1063/1.4963666. eCollection 2016 Sep.

Abstract

Microdroplets have been widely used in various biomedical applications. During droplet generation, parameters are manually adjusted to achieve the desired size of droplets. This process is tedious and time-consuming. In this paper, we present a fully automated system for controlling the size of droplets to optimize droplet generation parameters in a microfluidic flow-focusing device. The developed system employed a novel image processing program to measure the diameter of droplets from recorded video clips and correspondingly adjust the flow rates of syringe pumps to obtain the required diameter of droplets. The system was tested to generate phosphate-buffered saline and 8% polyethylene (glycol) diacrylate prepolymer droplets and regulate its diameters at various flow rates. Experimental results demonstrated that the difference between droplet diameters from the image processing and manual measurement is not statistically significant and the results are consistent over five repetitions. Taking the advantages of the accurate image processing method, the size of the droplets can be optimized in a precise and robust manner via automatically adjusting flow rates by the feedback control. The system was used to acquire quantitative data to examine the effects of viscosity and flow rates. Droplet-based experiments can be greatly facilitated by the automatic droplet generation and optimization system. Moreover, the system is able to provide quantitative data for the modelling and application of droplets with various conditions in a high-throughput way.

摘要

微滴已广泛应用于各种生物医学应用中。在微滴生成过程中,参数需手动调整以达到所需的微滴尺寸。此过程繁琐且耗时。在本文中,我们提出了一种全自动系统,用于控制微滴尺寸,以优化微流控流动聚焦装置中的微滴生成参数。所开发的系统采用了一种新颖的图像处理程序,从录制的视频片段中测量微滴直径,并相应地调整注射泵的流速,以获得所需的微滴直径。该系统经过测试,用于生成磷酸盐缓冲盐水和8%聚乙二醇二丙烯酸酯预聚物微滴,并在不同流速下调节其直径。实验结果表明,图像处理得到的微滴直径与手动测量结果之间的差异无统计学意义,且在五次重复实验中结果一致。利用精确图像处理方法的优势,通过反馈控制自动调节流速,可以精确且稳健地优化微滴尺寸。该系统用于获取定量数据,以研究粘度和流速的影响。自动微滴生成和优化系统可极大地促进基于微滴的实验。此外,该系统能够以高通量方式为各种条件下微滴的建模和应用提供定量数据。

相似文献

1
An automated system for high-throughput generation and optimization of microdroplets.
Biomicrofluidics. 2016 Sep 27;10(5):054110. doi: 10.1063/1.4963666. eCollection 2016 Sep.
2
Microneedle-assisted microfluidic flow focusing for versatile and high throughput water-in-water droplet generation.
J Colloid Interface Sci. 2019 Oct 1;553:382-389. doi: 10.1016/j.jcis.2019.05.100. Epub 2019 May 30.
3
Negative Pressure Provides Simple and Stable Droplet Generation in a Flow-Focusing Microfluidic Device.
Micromachines (Basel). 2021 Jun 5;12(6):662. doi: 10.3390/mi12060662.
4
[Standard technical specifications for methacholine chloride (Methacholine) bronchial challenge test (2023)].
Zhonghua Jie He He Hu Xi Za Zhi. 2024 Feb 12;47(2):101-119. doi: 10.3760/cma.j.cn112147-20231019-00247.
5
Oscillating dispersed-phase co-flow microfluidic droplet generation: Multi-droplet size effect.
Biomicrofluidics. 2018 Jun 18;12(3):034113. doi: 10.1063/1.5034473. eCollection 2018 May.
7
Controlled generation of droplets using an electric field in a flow-focusing paper-based device.
Electrophoresis. 2022 Feb;43(4):601-608. doi: 10.1002/elps.202100245. Epub 2021 Nov 17.
8
[Rapid generation of double-layer emulsion droplets based on microfluidic chip].
Sheng Wu Gong Cheng Xue Bao. 2020 Jul 25;36(7):1405-1413. doi: 10.13345/j.cjb.190525.
9
dDrop-Chip: disposable film-chip microfluidic device for real-time droplet feedback control.
Lab Chip. 2023 Mar 28;23(7):1896-1904. doi: 10.1039/d2lc01069k.
10
Dynamic video recognition for cell-encapsulating microfluidic droplets.
Analyst. 2024 Mar 25;149(7):2147-2160. doi: 10.1039/d4an00022f.

引用本文的文献

1
Microfluidics-based fabrication of cell-laden microgels.
Biomicrofluidics. 2020 Mar 5;14(2):021501. doi: 10.1063/1.5134060. eCollection 2020 Mar.
2
A Facile Strategy for Visualizing and Modulating Droplet-Based Microfluidics.
Micromachines (Basel). 2019 Apr 29;10(5):291. doi: 10.3390/mi10050291.

本文引用的文献

1
A microfluidic device for automated, high-speed microinjection of Caenorhabditis elegans.
Biomicrofluidics. 2016 Feb 26;10(1):011912. doi: 10.1063/1.4941984. eCollection 2016 Jan.
2
Magnetically guided micro-droplet using biological magnetic material for smart drug delivery system.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:1390-3. doi: 10.1109/EMBC.2014.6943859.
3
An optical multi-sensing system for detection of cardiovascular toxicity.
Biotechnol Lett. 2014 May;36(5):1089-94. doi: 10.1007/s10529-014-1453-1. Epub 2014 Feb 22.
4
Block-and-break generation of microdroplets with fixed volume.
Biomicrofluidics. 2013 Apr 10;7(2):24108. doi: 10.1063/1.4801637. eCollection 2013.
5
Microfluidics-assisted fabrication of gelatin-silica core-shell microgels for injectable tissue constructs.
Biomacromolecules. 2014 Jan 13;15(1):283-90. doi: 10.1021/bm401533y. Epub 2014 Jan 2.
6
A mini-microscope for in situ monitoring of cells.
Lab Chip. 2012 Oct 21;12(20):3976-82. doi: 10.1039/c2lc40345e.
7
Droplet based microfluidics.
Rep Prog Phys. 2012 Jan;75(1):016601. doi: 10.1088/0034-4885/75/1/016601. Epub 2011 Dec 22.
8
Microfluidic fabrication of microengineered hydrogels and their application in tissue engineering.
Lab Chip. 2012 Jan 7;12(1):45-59. doi: 10.1039/c1lc20859d. Epub 2011 Nov 21.
9
High-throughput combinatorial cell co-culture using microfluidics.
Integr Biol (Camb). 2011 Jun;3(6):653-62. doi: 10.1039/c1ib00002k. Epub 2011 Apr 28.
10
Molding cell beads for rapid construction of macroscopic 3D tissue architecture.
Adv Mater. 2011 Mar 25;23(12):H90-4. doi: 10.1002/adma.201004375. Epub 2011 Mar 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验